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Preface

Among the hundreds of laws that describe the universe, there
lurks a mighty handful. These are the laws of thermodynamics,
which summarize the properties of energy and its transformation
from one form to another. I hesitated to include the word
‘thermodynamics’ in the original title of this little introduction to
this boundlessly important and fascinating aspect of nature,
hoping that you would read at least this far, for the word does not
suggest a light read. And, indeed, I cannot pretend that it will be a
light read. When in due course, however, you emerge from the
other end of this slim volume, with your brain more sinewy and
exercised, you will have a profound understanding of the role of
energy in the world. In short, you will know what drives the
universe.

Do not think that thermodynamics is only about steam engines:
it is about almost everything. The concepts did indeed emerge
during the nineteenth century when steam was the hot topic of
the day, but as the laws of thermodynamics became formulated
and their ramifications explored it became clear that the subject
could touch an enormously wide range of phenomena, from the
efficiency of heat engines, heat pumps, and refrigerators, taking
in chemistry on the way, and reaching as far as the processes of
life. We shall travel across that range in the pages that
follow.

xi
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The mighty handful consists of four laws, with the numbering
starting inconveniently at zero and ending at three. The first two
laws (the ‘zeroth’ and the ‘first’) introduce two familiar but
nevertheless enigmatic properties, the temperature and the
energy. The third of the four (the ‘second law’) introduces what
many take to be an even more elusive property, the entropy, but
which I hope to show is easier to comprehend than the seemingly
more familiar properties of temperature and energy. The second
law is one of the all-time great laws of science, for
it illuminates why anything—anything from the cooling of hot
matter to the formulation of a thought—happens at all. The fourth
of the laws (the ‘third law’) has a more technical role, but rounds
out the structure of the subject and both enables and foils its
applications. Although the third law establishes a barrier that
prevents us from reaching the absolute zero of temperature, of
becoming absolutely cold, we shall see that there is a bizarre and
attainable mirror world that lies below zero.

Thermodynamics grew from observations on bulk matter—as
bulky as steam engines, in some cases—and became established
before many scientists were confident that atoms were more than
mere accounting devices. The subject is immeasurably enriched,
however, if the observation-based formulation of thermodynamics
is interpreted in terms of atoms and molecules. In this account we
consider first the observational aspects of each law, then dive
below the surface of bulk matter and discover the illumination
that comes from the interpretation of the laws in terms of
concepts that inhabit the underworld of atoms.

In conclusion, and before you roll up the sleeves of your mind and
get on with the business of understanding the workings of the
universe, I must thank Sir John Rowlinson for commenting in
detail on two drafts of the manuscript: his scholarly advice was
enormously helpful. If errors remain, they will no doubt be traced
to where I disagreed with him.

xii
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Chapter 1

The zeroth law

The concept of temperature

The zeroth law is an afterthought. Although it had long been
known that such a law was essential to the logical structure of
thermodynamics, it was not dignified with a name and number
until early in the twentieth century. By then, the first and second
laws had become so firmly established that there was no hope of
going back and renumbering them. As will become apparent, each
law provides an experimental foundation for the introduction of a
thermodynamic property. The zeroth law establishes the meaning
of what is perhaps the most familiar but is in fact the most
enigmatic of these properties: temperature.

Thermodynamics, like much of the rest of science, takes terms
with an everyday meaning and sharpens them—some would say,
hijacks them—so that they take on an exact and unambiguous
meaning. We shall see that happening throughout this
introduction to thermodynamics. It starts as soon as we enter its
doors. The part of the universe that is at the centre of attention in
thermodynamics is called the system. A system may be a block of
iron, a beaker of water, an engine, a human body. It may even be a
circumscribed part of each of those entities. The rest of the
universe is called the surroundings. The surroundings are where
we stand to make observations on the system and infer its
properties. Quite often, the actual surroundings consist of a water

1
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bath maintained at constant temperature, but that is a more
controllable approximation to the true surroundings, the rest of
the world. The system and its surroundings jointly make up the
universe. Whereas for us the universe is everything, for a less
profligate thermodynamicist it might consist of a beaker of water
(the system) immersed in a water bath (the surroundings).

A system is defined by its boundary. If matter can be added to or
removed from the system, then it is said to be open. A bucket, or
more refinedly an open flask, is an example, because we can just
shovel in material. A system with a boundary that is impervious to
matter is called closed. A sealed bottle is a closed system. A system
with a boundary that is impervious to everything in the sense that
the system remains unchanged regardless of anything that
happens in the surroundings is called isolated. A stoppered
vacuum flask of hot coffee is a good approximation to an isolated
system.

The properties of a system depend on the prevailing conditions.
For instance, the pressure of a gas depends on the volume it
occupies, and we can observe the effect of changing that volume if
the system has flexible walls. ‘Flexible walls’ is best thought of as
meaning that the boundary of the system is rigid everywhere
except for a patch—a piston—that can move in and out. Think of a
bicycle pump with your finger sealing the orifice.

Properties are divided into two classes. An extensive property

depends on the quantity of matter in the system—its extent. The
mass of a system is an extensive property; so is its volume. Thus,
2 kg of iron occupies twice the volume of 1 kg of iron. An intensive

property is independent of the amount of matter present. The
temperature (whatever that is) and the density are examples. The
temperature of water drawn from a thoroughly stirred hot tank is
the same regardless of the size of the sample. The density of iron is
8.9 g cm−3 regardless of whether we have a 1 kg block or a 2 kg

2
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block. We shall meet many examples of both kinds of property as
we unfold thermodynamics and it is helpful to keep the distinction
in mind.

Introducing equilibrium

So much for these slightly dusty definitions. Now we shall use a
piston—a movable patch in the boundary of a system—to
introduce one important concept that will then be the basis for
introducing the enigma of temperature and the zeroth law itself.

Suppose we have two closed systems, each with a piston on one
side and pinned into place to make a rigid container (Figure 1).
The two pistons are connected with a rigid rod so that as one
moves out the other moves in. We release the pins on the piston. If
the piston on the left drives the piston on the right into that
system, we can infer that the pressure on the left was higher than
that on the right, even though we have not made a direct measure
of the two pressures. If the piston on the right won the battle, then
we would infer that the pressure on the right was higher than that
on the left. If nothing had happened when we released the pins,
we would infer that the pressures of the two systems were the

1. If the gases in these two containers are at different pressures, when
the pins holding the pistons are released, the pistons move one way or
the other until the two pressures are the same. The two systems are
then in mechanical equilibrium. If the pressures are the same to begin
with, there is no movement of the pistons when the pins are
withdrawn, for the two systems are already in mechanical equilibrium

3
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same, whatever they might be. The technical expression for the
condition arising from the equality of pressures ismechanical

equilibrium. Thermodynamicists get very excited, or at least
get very interested, when nothing happens, and this condition
of equilibrium will grow in importance as we go through the laws.

We need one more aspect of mechanical equilibrium: it will seem
trivial at this point, but establishes the analogy that will enable us
to introduce the concept of temperature. Suppose the two systems,
which we shall call A and B, are in mechanical equilibrium when
they are brought together and the pins are released. That is, they
have the same pressure. Now suppose we break the link between
them and establish a link between system A and a third system, C,
equipped with a piston. Suppose we observe no change: we infer
that the systems A and C are in mechanical equilibrium and we
can go on to say that they have the same pressure. Now suppose
we break that link and put system C in mechanical contact with
system B. Even without doing the experiment, we know what will
happen: nothing. Because systems A and B have the same
pressure, and A and C have the same pressure, we can be confident
that systems C and B have the same pressure, and that pressure is
a universal indicator of mechanical equilibrium.

Now we move from mechanics to thermodynamics and the world
of the zeroth law. Suppose that system A has rigid walls made of
metal and system B likewise. When we put the two systems in
contact, they might undergo some kind of physical change. For
instance, their pressures might change or we could see a change in
colour through a peephole. In everyday language we would say
that ‘heat has flowed from one system to the other’ and their
properties have changed accordingly. Don’t imagine, though, that
we know what heat is yet: that mystery is an aspect of the first law,
and we aren’t even at the zeroth law yet.

It may be the case that no change occurs when the two systems are
in contact even though they are made of metal. In that case we say

4
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A
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A

B C
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B
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2. A representation of the zeroth law involving (top left) three systems
that can be brought into thermal contact. If A is found to be in thermal
equilibrium with B (top right), and B is in thermal equilibrium with C
(bottom left), then we can be confident that C will be in thermal
equilibrium with A if they are brought into contact (bottom right)

that the two systems are in thermal equilibrium.Now consider
three systems (Figure 2), just as we did when talking about
mechanical equilibrium. It is found that if A is put in contact with
B and found to be in thermal equilibrium, and B is put in contact
with C and found to be in thermal equilibrium, then when C is put
in contact with A, it is always found that the two are in thermal
equilibrium. This rather trite observation is the essential content
of the zeroth law of thermodynamics:

if A is in thermal equilibrium with B, and B is in thermal

equilibrium with C, then C will be in thermal equilibrium with A.

The zeroth law implies that just as the pressure is
a physical property that enables us to anticipate when systems will
be in mechanical equilibrium when brought together regardless
of their composition and size, then there exists a property
that enables us to anticipate when two systems will be in thermal
equilibrium regardless of their composition and size: we call

5
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this universal property the temperature.We can now summarize
the statement about the mutual thermal equilibrium of the three
systems simply by saying that they all have the same temperature.
We are not yet claiming that we know what temperature is, all we
are doing is recognizing that the zeroth law implies the existence
of a criterion of thermal equilibrium: if the temperatures of
two systems are the same, then they will be in thermal equilibrium
when put in contact through conducting walls and an observer
of the two systems will have the excitement of noting that nothing
changes.

We can now introduce two more contributions to the vocabulary
of thermodynamics. Rigid walls that permit changes of state when
closed systems are brought into contact—that is, in the language
of Chapter 2, permit the conduction of heat—are called
diathermic (from the Greek words for ‘through’ and ‘warm’).
Typically, diathermic walls are made of metal, but any conducting
material would do. Saucepans are diathermic vessels. If no change
occurs, then either the temperatures are the same or—if we know
that they are different—then the walls are classified as adiabatic
(‘impassable’). We can anticipate that walls are adiabatic if they
are thermally insulated, such as in a vacuum flask or if the system
is embedded in foamed polystyrene.

The zeroth law is the basis of the existence of a thermometer, a
device for measuring temperature. A thermometer is just a
special case of the system B that we talked about earlier. It is a
system with a property that might change when put in contact
with a system with diathermic walls. A typical thermometer
makes use of the thermal expansion of mercury or the change in
the electrical properties of material. Thus, if we have a system B
(‘the thermometer’) and put it in thermal contact with A, and
find that the thermometer does not change, and then we put the
thermometer in contact with C and find that it still doesn’t
change, then we can report that A and C are at the same
temperature.

6
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–300 –200 –100 0 100

–400 –200 0 200

0

100 200 300 400

Celsius

Fahrenheit

Kelvin

3. Three common temperature scales showing the relations between
them. The vertical dotted line on the left shows the lowest achievable
temperature; the two dotted lines on the right show the normal
freezing and boiling points of water

There are several scales of temperature, and how they are
established is fundamentally the domain of the second law (see
Chapter 3). However, it would be too cumbersome to avoid
referring to these scales until then, though formally that could be
done, and everyone is aware of the Celsius (centigrade) and
Fahrenheit scales. The Swedish astronomer Anders Celsius
(1701–1744) after whom the former is named devised a scale on
which water froze at 100◦ and boiled at 0◦, the opposite of the
current version of his scale (0◦C and 100◦C, respectively). The
German instrument maker Daniel Fahrenheit (1686–1736) was
the first to use mercury in a thermometer: he set 0◦ at the lowest
temperature he could reach with a mixture of salt, ice, and water,
and for 100◦ he chose his body temperature, a readily
transportable but unreliable standard. On this scale water freezes
at 32◦F and boils at 212◦F (Figure 3).

The temporary advantage of Fahrenheit’s scale was that with the
primitive technology of the time, negative values were rarely
needed. As we shall see, however, there is an absolute zero of
temperature, a zero that cannot be passed and where negative
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temperatures have no meaning except in a certain formal sense,
not one that depends on the technology of the time (see
Chapter 5). It is therefore natural to measure temperatures by
setting 0 at this lowest attainable zero and to refer to such
absolute temperatures as the thermodynamic temperature.
Thermodynamic temperatures are denoted T, and whenever that
symbol is used in this book, it means the absolute temperature
with T = 0 corresponding to the lowest possible temperature. The
most common scale of thermodynamic temperatures is the Kelvin
scale, which uses degrees (‘kelvins’, K) of the same size as the
Celsius scale. On this scale, water freezes at 273 K (that is, at 273
Celsius-sized degrees above absolute zero; the degree sign is not
used on the Kelvin scale) and boils at 373 K. Put another way, the
absolute zero of temperature lies at −273◦C. Very occasionally you
will come across the Rankine scale, in which absolute
temperatures are expressed using degrees of the same size as
Fahrenheit’s.

Themolecular world

In each of the first three chapters I shall introduce a property from
the point of view of an external observer. Then I shall enrich our
understanding by showing how that property is illuminated by
thinking about what is going on inside the system. Speaking about
the ‘inside’ of a system, its structure in terms of atoms and
molecules, is alien to classical thermodynamics, but it adds deep
insight, and science is all about insight.

Classical thermodynamics is the part of thermodynamics that
emerged during the nineteenth century before everyone was fully
convinced about the reality of atoms, and concerns relationships
between bulk properties. You can do classical thermodynamics
even if you don’t believe in atoms. Towards the end of the
nineteenth century, when most scientists accepted that atoms
were real and not just an accounting device, there emerged the

8
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version of thermodynamics called statistical thermodynamics,
which sought to account for the bulk properties of matter in terms
of its constituent atoms. The ‘statistical’ part of the name comes
from the fact that in the discussion of bulk properties we don’t
need to think about the behaviour of individual atoms but we do
need to think about the average behaviour of myriad atoms. For
instance, the pressure exerted by a gas arises from the impact
of its molecules on the walls of the container; but to understand
and calculate that pressure, we don’t need to calculate the
contribution of every single molecule: we can just look at the
average of the storm of molecules on the walls. In short, whereas
dynamics deals with the behaviour of individual bodies,
thermodynamics deals with the average behaviour of vast numbers
of them.

The central concept of statistical thermodynamics as far as we are
concerned in this chapter is an expression derived by Ludwig
Boltzmann (1844–1906) towards the end of the nineteenth
century. That was not long before he committed suicide, partly
because he found intolerable the opposition to his ideas from
colleagues who were not convinced about the reality of atoms. Just
as the zeroth law introduces the concept of temperature from the
viewpoint of bulk properties, so the expression that Boltzmann
derived introduces it from the viewpoint of atoms, and illuminates
its meaning.

To understand the nature of Boltzmann’s expression, we need
to know that an atom can exist with only certain energies. This is
the domain of quantum mechanics, but we do not need any of
that subject’s details, only that single conclusion. At a given
temperature—in the bulk sense—a collection of atoms consists
of some in their lowest energy state (their ‘ground state’), some
in the next higher energy state, and so on, with populations that
diminish in progressively higher energy states. When the
populations of the states have settled down into their
‘equilibrium’ populations, and although atoms continue to
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jump between energy levels there is no net change in the
populations, it turns out that these populations can be calculated
from a knowledge of the energies of the states and a single
parameter, ‚ (beta).

Another way of thinking about the problem is to think of a series
of shelves fixed at different heights on a wall, the shelves
representing the allowed energy states and their heights the
allowed energies. The nature of these energies is immaterial: they
may correspond, for instance, to the translational, rotational, or
vibrational motion of molecules. Then we think of tossing balls
(representing the molecules) at the shelves and noting where they
land. It turns out that the most probable distribution of
populations (the numbers of balls that land on each shelf ) for a
large number of throws, subject to the requirement that the total
energy has a particular value, can be expressed in terms of that
single parameter ‚.

The precise form of the distribution of the molecules over their
allowed states, or the balls over the shelves, is called the
Boltzmann distribution. This distribution is so important that it is
important to see its form. To simplify matters, we shall express it
in terms of the ratio of the population of a state of energy E to the
population of the lowest state, of energy 0:

Population of state of energy E
Population of state of energy 0

= e−‚E

We see that for states of progressively higher energy, the
populations decrease exponentially: there are fewer balls on the
high shelves than on the lower shelves. We also see that as the
parameter ‚ increases, then the relative population of a state of
given energy decreases and the balls sink down on to the lower
shelves. They retain their exponential distribution, with
progressively fewer balls in the upper levels, but the populations
die away more quickly with increasing energy.
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When the Boltzmann distribution is used to calculate the
properties of a collection of molecules, such as the pressure of a
gaseous sample, it turns out that it can be identified with the
reciprocal of the (absolute) temperature. Specifically, ‚ = 1/kT,
where k is a fundamental constant called Boltzmann’s constant.

To bring ‚ into line with the Kelvin temperature scale, k has the
value 1.38 × 10−23 joules per kelvin. Energy is reported in joules
(J): 1 J = 1 kg m2 s−2. We could think of 1 J as the energy of a 2 kg
ball travelling at 1 m s−1. Each pulse of the human heart expends
an energy of about 1 J. The point to remember is that, because ‚ is
proportional to 1/T, as the temperature goes up, ‚ goes down, and
vice versa.

There are several points worth making here. First, the huge
importance of the Boltzmann distribution is that it reveals the
molecular significance of temperature: temperature is the

parameter that tells us the most probable distribution of

populations of molecules over the available states of a system at

equilibrium. When the temperature is high (‚ low), many states
have significant populations; when the temperature is low (‚
high), only the states close to the lowest state have significant
populations (Figure 4). Regardless of the actual values of the
populations, they invariably follow an exponential distribution of
the kind given by the Boltzmann expression. In terms of our
balls-on-shelves analogy, low temperatures (high ‚) corresponds
to our throwing the balls weakly at the shelves so that only the
lowest are occupied. High temperatures (low ‚) corresponds to
our throwing the balls vigorously at the shelves, so that even high
shelves are populated significantly. Temperature, then, is just a
parameter that summarizes the relative populations of energy

levels in a system at equilibrium.

The second point is that ‚ is a more natural parameter for
expressing temperature than T itself. Thus, whereas later we shall
see that absolute zero of temperature (T = 0) is unattainable in a
finite number of steps, which may be puzzling, it is far less
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4. The Boltzmann distribution is an exponentially decaying function
of the energy. As the temperature is increased, the populations migrate
from lower energy levels to higher energy levels. At absolute zero, only
the lowest state is occupied; at infinite temperature, all states are
equally populated

surprising that an infinite value of ‚ (the value of ‚ when T = 0) is
unattainable in a finite number of steps. However, although ‚ is
the more natural way of expressing temperatures, it is ill-suited to
everyday use. Thus water freezes at 0◦C (273 K), corresponding to
‚ = 2.65 × 1020 J−1, and boils at 100◦C (373 K), corresponding
to ‚ = 1.94 × 1020 J−1. These are not values that spring readily off
the tongue. Nor are the values of ‚ that typify a cool day (10◦C,
corresponding to 2.56 × 1020 J−1) and a warmer one (20◦C,
corresponding to 2.47 × 1020 J−1).

The third point is that the existence and value of the fundamental
constant k is simply a consequence of our insisting on using a
conventional scale of temperature rather than the truly
fundamental scale based on ‚. The Fahrenheit, Celsius, and Kelvin
scales are misguided: the reciprocal of temperature, essentially ‚,
is more meaningful, more natural, as a measure of temperature.
There is no hope, though, that it will ever be accepted, for history
and the potency of simple numbers, like 0 and 100, and even 32
and 212, are too deeply embedded in our culture, and just too
convenient for everyday use.
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Although Boltzmann’s constant k is commonly listed as a
fundamental constant, it is actually only a recovery from a
historical mistake. If Ludwig Boltzmann had done his work before
Fahrenheit and Celsius had done theirs, then it would have been
seen that ‚ was the natural measure of temperature, and we might
have become used to expressing temperatures in the units of
inverse joules with warmer systems at low values of ‚ and cooler
systems at high values. However, conventions had become
established, with warmer systems at higher temperatures than
cooler systems, and kwas introduced, through k‚ = 1/T, to align
the natural scale of temperature based on ‚ to the conventional
and deeply ingrained one based on T. Thus, Boltzmann’s constant
is nothing but a conversion factor between a well-established
conventional scale and the one that, with hindsight, society might
have adopted. Had it adopted ‚ as its measure of temperature,
Boltzmann’s constant would not have been necessary.

We shall end this section on a more positive note. We have
established that the temperature, and specifically ‚, is a parameter
that expresses the equilibrium distribution of the molecules of a
system over their available energy states. One of the easiest
systems to imagine in this connection is a perfect (or ‘ideal’) gas, in
which we imagine the molecules as forming a chaotic swarm,
some moving fast, others slow, travelling in straight lines until one
molecule collides with another, rebounding in a different direction
and with a different speed, and striking the walls in a storm of
impacts and thereby giving rise to what we interpret as pressure. A
gas is a chaotic assembly of molecules (indeed, the words ‘gas’ and
‘chaos’ stem from the same root), chaotic in spatial distribution
and chaotic in the distribution of molecular speeds. Each speed
corresponds to a certain kinetic energy, and so the Boltzmann
distribution can be used to express, through the distribution of
molecules over their possible translational energy states, their
distribution of speeds, and to relate that distribution of speeds to
the temperature. The resulting expression is called the
Maxwell–Boltzmann distribution of speeds, for James Clerk
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molecules of various mass and at different temperatures. Note that
light molecules have higher average speeds than heavy molecules. The
distribution has consequences for the composition of planetary
atmospheres, as light molecules (such as hydrogen and helium) may be
able to escape into space

Maxwell (1831–1879) first derived it in a slightly different way.
When the calculation is carried through, it turns out that the
average speed of the molecules increases as the square root of
the absolute temperature. The average speed of molecules in the
air on a warm day (25◦C, 298 K) is greater by 4 per cent than their
average speed on a cold day (0◦C, 273 K). Thus, we can think of
temperature as an indication of the average speeds of molecules in
a gas, with high temperatures corresponding to high average
speeds and low temperatures to lower average speeds (Figure 5).

Aword of summary

A word or two of summary might be appropriate at this point.
From the outside, from the viewpoint of an observer stationed, as
always, in the surroundings, temperature is a property that reveals
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whether, when closed systems are in contact through diathermic
boundaries, they will be in thermal equilibrium—their
temperatures are the same—or whether there will be a consequent
change of state—their temperatures are different—that will
continue until the temperatures have equalized. From the inside,
from the viewpoint of a microscopically eagle-eyed observer
within the system, one able to discern the distribution of
molecules over the available energy levels, the temperature is the
single parameter that expresses those populations. As the
temperature is increased, that observer will see the population
extending up to higher energy states, and as it is lowered, the
populations relax back to the states of lower energy. At any
temperature, the relative population of a state varies exponentially
with the energy of the state. That states of higher energy are
progressively populated as the temperature is raised means that
more and more molecules are moving (including rotating and
vibrating) more vigorously, or the atoms trapped at their locations
in a solid are vibrating more vigorously about their average
positions. Turmoil and temperature go hand in hand.
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Chapter 2

The first law

The conservation of energy

The first law of thermodynamics is generally thought to be the
least demanding to grasp, for it is an extension of the law of

conservation of energy, that energy can be neither created nor
destroyed. That is, however much energy there was at the start of
the universe, so there will be that amount at the end. But
thermodynamics is a subtle subject, and the first law is much more
interesting than this remark might suggest. Moreover, like the
zeroth law, which provided an impetus for the introduction of the
property ‘temperature’ and its clarification, the first law motivates
the introduction and helps to clarify the meaning of the elusive
concept of ‘energy’.

We shall assume at the outset that we have no inkling that there is
any such property, just as in the introduction to the zeroth law we
did not pre-assume that there was anything we should call
temperature, and then found that the concept was forced upon us
as an implication of the law. All we shall assume is that the
well-established concepts of mechanics and dynamics, like mass,
weight, force, and work, are known. In particular, we shall base
the whole of this presentation on an understanding of the notion
of ‘work’.

Work is motion against an opposing force. We do work when we
raise a weight against the opposing force of gravity. The
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magnitude of the work we do depends on the mass of the object,
the strength of the gravitational pull on it, and the height through
which it is raised. You yourself might be the weight: you do work
when you climb a ladder; the work you do is proportional to your
weight and the height through which you climb. You also do work
when cycling into the wind: the stronger the wind and the further
you travel the greater the work you do. You do work when you
stretch or compress a spring, and the amount of work you do
depends on the strength of the spring and the distance through
which it is stretched or compressed.

All work is equivalent to the raising of a weight. For instance,
although we might think of stretching a spring, we could connect
the stretched spring to a pulley and weight and see how far the
weight is raised when the spring returns to its natural length. The
magnitude of the work of raising a massm (for instance, 50 kg)
through a height h (for instance, 2.0 m) on the surface of the
Earth is calculated from the formulamgh, where g is a constant
known as the acceleration of free fall, which at sea level on Earth is
close to 9.8 m s−2. Raising a 50 kg weight through 2.0 m requires
work of magnitude 980 kg m2 s−2. As we saw on p. 11, the
awkward combination of units ‘kilograms metre squared per
second squared’ is called the joule (symbol J). So, to raise our
weight, we have to do 980 joules (980 J) of work.

Work is the primary foundation of thermodynamics and in
particular of the first law. Any system has the capacity to do
work. For instance, a compressed or extended spring can
do work: as we have remarked, it can be used to bring about the
raising of a weight. An electric battery has the capacity to do
work, for it can be connected to an electric motor which in turn
can be used to raise a weight. A lump of coal in an atmosphere of
air can be used to do work by burning it as a fuel in some kind of
engine. It is not an entirely obvious point, but when we drive an
electric current through a heater, we are doing work on the
heater, for the same current could be used to raise a weight by
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passing it through an electric motor rather than the heater. Why
a heater is called a ‘heater’ and not a ‘worker’ will become clear
once we have introduced the concept of heat. That concept hasn’t
appeared yet.

With work a primary concept in thermodynamics, we need
a term to denote the capacity of a system to do work: that
capacity we term energy. A fully stretched spring has a greater
capacity to do work than the same spring only slightly stretched:
the fully stretched spring has a greater energy than the slightly
stretched spring. A litre of hot water has the capacity to do more
work than the same litre of cold water: a litre of hot water has a
greater energy than a litre of cold water. In this context, there is
nothing mysterious about energy: it is just a measure of the
capacity of a system to do work, and we know exactly what we
mean by work.

Path independence

Now we extend these concepts from dynamics to thermodynamics.
Suppose we have a system enclosed in adiabatic (thermally
non-conducting) walls. We established the concept of ‘adiabatic’
in Chapter 1 by using the zeroth law, so we have not slipped in an
undefined term. In practice, by ‘adiabatic’ we mean a thermally
insulated container, like a well-insulated vacuum flask. We can
monitor the temperature of the contents of the flask by using a
thermometer, which is another concept introduced by the zeroth
law, so we are still on steady ground. Now we do some
experiments.

First, we churn the contents of the flask (that is, the system)
with paddles driven by a falling weight, and note the change in
temperature this churning brings about. Exactly this type of
experiment was performed by J. P. Joule (1818–1889), one of the
fathers of thermodynamics, in the years following 1843. We know

18



Th
e
fi
rst

law
:Th

e
co

n
servatio

n
o
fen

erg
y

how much work has been done by noting the heaviness
of the weight and the distance through which it fell. Then we
remove the insulation and let the system return to its original
state. After replacing the insulation, we put a heater into the
system and pass an electric current for a time that results in the
same work being done on the heater as was done by the falling
weight. We would have done other measurements to relate the
current passing through a motor for various times and noting the
height to which weights are raised, so we can interpret the
combination of time and current as an amount of work performed.
The conclusion we arrive at in this pair of experiments and in a
multitude of others of a similar kind is that the same amount of

work, however it is performed, brings about the same change of

state of the system.

This conclusion is like climbing a mountain by a variety of
different paths, each path corresponding to a different method of
doing work. Provided we start at the same base camp and arrive at
the same destination, we shall have climbed through the same
height regardless of the path we took between them. That is, we
can attach a number (the ‘altitude’) to every point on the
mountain, and calculate the height we have climbed, regardless of
the path, by taking the difference of the initial and final altitudes
for our climb. Exactly the same applies to our system. The fact that
the change of state is path-independent means that we can
associate a number, which we shall call the internal energy
(symbolU) with each state of the system. Then we can calculate
the work needed to travel between any two states by taking the
difference of the initial and final values of the internal energy, and
write work required = U(final) −U(initial) (Figure 6).

The observation of the path-independence of the work required to
go between two specified states in an adiabatic system (remember,
at this stage the system is adiabatic) has motivated the recognition
that there is a property of the system that is a measure of its
capacity to do work. In thermodynamics, a property that depends
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6. The observation that different ways of doing work on a system and
thereby changing its state between fixed endpoints required the same
amount of work is analogous to different paths on amountain
resulting in the same change of altitude leads to the recognition of the
existence of a property called the internal energy

only on the current state of the system and is independent of how
that state was prepared (like altitude in geography) is called a state
function. Thus, our observations have motivated the introduction
of the state function called internal energy. We might not
understand the deep nature of internal energy at this stage, but
nor did we understand the deep nature of the state function we
called temperature when we first encountered it in the context of
the zeroth law.

We have not yet arrived at the first law: this will take a little more
work, both literally and figuratively. To move forward, let’s
continue with the same system but strip away the thermal
insulation so that it is no longer adiabatic. Suppose we do our
churning business again, starting from the same initial state and
continuing until the system is in the same final state as before. We
find that a different amount of work is needed to reach the final
state.

Typically, we find that more work has to be done than in the
adiabatic case. We are driven to conclude that the internal energy
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can change by an agency other than by doing work. One way of
regarding this additional change is to interpret it as arising from
the transfer of energy from the system into the surroundings due
to the difference in temperature caused by the work that we do as
we churn the contents. This transfer of energy as a result of a
temperature difference is called heat.

The amount of energy that is transferred as heat into or out of the
system can be measured very simply: we measure the work
required to bring about a given change in the adiabatic system,
and then the work required to bring about the same change of
state in the diathermic system (the one with thermal insulation
removed), and take the difference of the two values. That
difference is the energy transferred as heat. A point to note is that
the measurement of the rather elusive concept of ‘heat’ has been
put on a purely mechanical foundation as the difference in the
heights through which a weight falls to bring about a given change
of state under two different conditions (Figure 7).

We are within a whisper of arriving at the first law. Suppose we
have a closed system and use it to do some work or allow a release
of energy as heat. Its internal energy falls. We then leave the

7. When a system is adiabatic (left), a given change of state is brought
about by doing a certain amount of work.When the same system
undergoes the same change of state in a non-adiabatic container
(right), more work has to be done. The difference is equal to the energy
lost as heat
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system isolated from its surroundings for as long as we like, and
later return to it. We invariably find that its capacity to do
work—its internal energy—has not been restored to its original
value. In other words,

the internal energy of an isolated system is constant.

That is the first law of thermodynamics, or at least one statement
of it, for the law comes in many equivalent forms.

Another universal law of nature, this time of human nature, is that
the prospect of wealth motivates deceit. Wealth—and untold
benefits to humanity—would accrue to an untold extent if the first
law were found to be false under certain conditions. It would be
found to be false if work could be generated by an adiabatic, closed
system without a diminution of its internal energy. In other words,
if we could achieve perpetual motion, work produced without
consumption of fuel. Despite enormous efforts, perpetual motion
has never been achieved. There have been claims galore, of course,
but all of them have involved a degree of deception. Patent offices
are now closed to the consideration of all such machines, for the
first law is regarded as unbreakable and reports of its
transgression not worth the time or effort to pursue. There are
certain instances in science, and certainly in technology, where a
closed mind is probably justified.

Heat as energy in transition

We have a variety of cleaning-up exercises to do before we leave
the first law. First, there is the use of the term ‘heat’. In everyday
language, heat is both a noun and a verb. Heat flows; we heat. In
thermodynamics heat is not an entity or even a form of energy:
heat is a mode of transfer of energy. It is not a form of energy, or a
fluid of some kind, or anything of any kind. Heat is the transfer of
energy by virtue of a temperature difference. Heat is the name of a
process, not the name of an entity.
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Everyday discourse would be stultified if we were to insist on the
precise use of the word heat, for it is enormously convenient to
speak of heat flowing from here to there, and to speak of heating
an object. The first of these everyday usages was motivated by the
view that heat is an actual fluid that flows between objects at
different temperatures, and this powerful imagery is embedded
indelibly in our language. Indeed, there are many aspects of the
migration of energy down temperature gradients that are fruitfully
treated mathematically by regarding heat as the flow of a massless
(‘imponderable’) fluid. But that is essentially a coincidence, it is
not an indicator that heat is actually a fluid any more than the
spread of consumer choice in a population, which can also be
treated by similar equations, is a tangible fluid.

What we should say, but it is usually too tedious actually to say it
repeatedly, is that energy is transferred as heat (that is, as the
result of a temperature difference). To heat, the verb, should for
precision be replaced by circumlocutions such as ‘we contrive a
temperature difference such that energy flows through a
diathermic wall in a desired direction’. Life, though, is too short,
and it is expedient, except when we want to be really precise, to
adopt the casual easiness of everyday language, and we shall cross
our fingers and do so, but do bear in mind how that shorthand
should be interpreted.

Heat and work: amolecular view

There has probably been detected a slipperiness in the preceding
remarks, for although we have warned against regarding heat as a
fluid, there is still the whiff of fluidity about our use of the term
energy. It looks as though we have simply pushed back to a deeper
layer the notion of fluid. This apparent deceit, though, is resolved
by identifying the molecular natures of heat and work. As usual,
digging into the underworld of phenomena illuminates them. In
thermodynamics, we always distinguish between the modes of
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8. The molecular distinction between the transfer of energy as work
(left) and heat (right). Doing work results in the uniformmotion of
atoms in the surroundings; heating stimulates their disorderly
motion

transfer of energy by observations in the surroundings: the system
is blind to the processes by which it is provided with or loses
energy. We can think of a system as like a bank: money can be paid
in or withdrawn in either of two currencies, but once inside there
is no distinction between the type of funds in which its reserves
are stored.

First, the molecular nature of work. We have seen that at an
observational level, doing work is equivalent to the raising of a
weight. From a molecular viewpoint, the raising of a weight
corresponds to all its atoms moving in the same direction. Thus,
when a block of iron is raised, all the iron atoms move upwards
uniformly. When the block is lowered—and does work on the
system, like compressing a spring or a gas, and increases its
internal energy—all its atoms move downwards uniformly.Work

is the transfer of energy that makes use of the uniform motion of

atoms in the surroundings (Figure 8).

Now, the molecular nature of heat. We saw in Chapter 1 that the
temperature is a parameter that tells us the relative numbers of
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atoms in the allowed energy states, with the higher energy states
progressively more populated as the temperature is increased. In
more pictorial terms, a block of iron at high temperature consists
of atoms that are oscillating vigorously around their average
positions. At low temperatures, the atoms continue to oscillate,
but with less vigour. If a hot block of iron is put in contact with a
cooler block, the vigorously oscillating atoms at the edge of the hot
block jostle the less vigorously oscillating atoms at the edge of the
cool block into more vigorous motion, and they pass on their
energy by jostling their neighbours. There is no net motion of
either block, but energy is transferred from the hotter to the cooler
block by this random jostling where the two blocks are in contact.
That is, heat is the transfer of energy that makes use of the random

motion of atoms in the surroundings (Figure 8).

Once the energy is inside the system, either by making use of the
uniform motion of atoms in the surroundings (a falling weight) or
of randomly oscillating atoms (a hotter object, such as a flame),
there is no memory of how it was transferred. Once inside, the
energy is stored as the kinetic energy (the energy due to motion)
and the potential energy (the energy due to position) of the
constituent atoms, and that energy can be withdrawn either as
heat or as work. The distinction between work and heat is made in
the surroundings: the system has no memory of the mode of
transfer nor is it concerned about how its store of energy will be
used.

This blindness to the mode of transfer needs a little further
explanation. Thus, if a gas in an adiabatic container is compressed
by a falling weight, the incoming piston acts like a bat in a
microscopic game of table-tennis. When a molecule strikes the
piston, it is accelerated. However, as it flies back into the gas it
undergoes collisions with the other molecules in the system, and
as a result its enhanced kinetic energy is quickly dispersed over
them and its direction of motion is randomized. When the same
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sample of gas is heated, the random jostling of the atoms in the
surroundings stimulates the gas molecules into more vigorous
motion, and the acceleration of the molecules at the thermally
conducting walls is quickly distributed over the entire sample.
The result within the system is the same.

We can now return to the faintly enigmatic remark made earlier
that an electric heater is better regarded as an electric worker.
The electric current that is passed through the coil of wire
within the heater is a uniform flow of electrons. The electrons
of that current collide with the atoms of the wire and cause
them to wobble around their mean positions. That is, the
energy—and the temperature—of the coil of wire is raised by doing
work on it. However, the coil of wire is in thermal contact with the
contents of the system, and the vigorous motion of the atoms of
the wire jostle the atoms of the system; that is, the filament heats
the system. So, although we do work on the heater itself, that
work is translated into heating the system: worker has become
heater.

A final point is that the molecular interpretation of heat and work
elucidates one aspect of the rise of civilization. Fire preceded the
harnessing of fuels to achieve work. The heat of fire—the tumbling
out of energy as the chaotic motion of atoms—is easy to contrive
for the tumbling is unconstrained. Work is energy tamed, and
requires greater sophistication to contrive. Thus, humanity
stumbled easily on to fire but needed millennia to arrive at the
sophistication of the steam engine, the internal combustion
engine, and the jet engine.

Introducing reversibility

The originators of thermodynamics were subtle people, and
quickly realized that they had to be careful when specifying how a
process is carried out. Although the technicality we shall describe
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now has little immediate relevance to the first law at the level of
our discussion, it will prove to be of vital significance when we
turn to the second law.

I alluded in Chapter 1 to science’s hijacking of familiar words and
adding a new precision to their meaning. In the current context
we need to consider the word ‘reversible’. In everyday language, a
reversible process is one that can be reversed. Thus, the rolling of a
wheel can be reversed, so in principle a journey can be traversed in
reverse. The compression of a gas can be reversed by pulling out
the piston that effected the compression. In thermodynamics
‘reversible’ means something rather more refined: a reversible
process in thermodynamics is one that is reversed by an
infinitesimal modification of the conditions in the surroundings.

The key word is infinitesimal. If we think of a gas in a system at a
certain pressure, with the piston moving out against a lower
external pressure, an infinitesimal change in the external pressure
will not reverse the motion of the piston. The expansion is
reversible in the colloquial sense but not in the thermodynamic
sense. If a block of iron (the system) at 20◦C is immersed in a
water bath at 40◦C, energy will flow as heat from the bath into the
block, and an infinitesimal change in the temperature of the water
will have no effect on the direction of flow. The transfer of energy
as heat is not reversible in the thermodynamic sense in this
instance. However, now consider the case in which the external
pressure matches the pressure of the gas in the system exactly. As
we saw in Chapter 1, we say that the system and its surroundings
are in mechanical equilibrium. Now increase the external pressure
infinitesimally: the piston moves in a little. Now reduce the
external pressure infinitesimally: the piston moves out a little. We
see that the direction of motion of the piston is changed by an
infinitesimal change in a property, in this case the pressure, of the
surroundings. The expansion is reversible in the thermodynamic
sense. Likewise, consider a system at the same temperature as the
surroundings. In this case the system and its surroundings are in
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thermal equilibrium. If we reduce the temperature of the
surroundings infinitesimally, energy flows out of the system as
heat. If we increase the temperature of the surroundings
infinitesimally, energy flows into the system as heat. The transfer
of energy as heat is reversible in the thermodynamic sense in this
instance.

The greatest amount of work is done if the expansion of a gas is
reversible at every stage. Thus, we match the external pressure to
the pressure of the gas in the system and then reduce the external
pressure infinitesimally: the piston moves out a little. The pressure
of the gas falls a little because it now occupies a greater volume.
Then we reduce the external pressure infinitesimally, the piston
moves out a little more and the pressure of the gas decreases
a little. This process of effectively matching the external pressure
to the falling pressure of the gas continues until the piston
has moved out a desired amount and, through its coupling to
a weight, has done a certain amount of work. No greater work can
be done, because if at any stage the external pressure is increased
even infinitesimally, then the piston will move in rather than out.
That is, by ensuring that at every stage the expansion is reversible
in the thermodynamic sense, the system does maximum work.
This conclusion is general: reversible changes achieve maximum

work. We shall draw on this generalization in the following
chapters.

Introducing enthalpy

Thermodynamicists are also subtle in their discussion of the
quantity of heat that can be extracted from a system, such as when
a fuel burns. We can appreciate the problem as follows. Suppose
we burn a certain amount of hydrocarbon fuel in a container fitted
with a movable piston. As the fuel burns it produces carbon
dioxide and water vapour, which occupy more space than the
original fuel and oxygen, and as a result the piston is driven out to
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accommodate the products. This expansion requires work. That is,
when a fuel burns in a container that is free to expand, some of the
energy released in the combustion is used to do work. If the
combustion takes place in a container with rigid walls, the
combustion releases the same amount of energy, but none of it is
used to do work because no expansion can occur. In other words,
more energy is available as heat in the latter case than in the
former. To calculate the heat that can be produced in the former
case, we have to account for the energy that is used to make room
for the carbon dioxide and water vapour and subtract that from
the total change in energy. This is true even if there is no physical
piston—if the fuel burns in a dish—because, although we cannot
see it so readily, the gaseous products must still make room for
themselves.

Thermodynamicists have developed a clever way of taking into
account the energy used to do work when any change, and
particularly the combustion of a fuel, occurs, without having to
calculate the work explicitly in each case. To do so, they switch
attention from the internal energy of a system, its total energy
content, to a closely related quantity, the enthalpy (symbol H).
The name comes from the Greek words for ‘heat inside’, and
although, as we have stressed, there is no such thing as ‘heat’ (it is
a process of transfer, not a thing), for the circumspect the name is
well chosen, as we shall see. The formal relation of enthalpy, H, to
internal energy,U, is easily written down as H = U + pV, where p

is the pressure of the system and V is its volume. From this
relation it follows that the enthalpy of a litre of water open to the
atmosphere is only 100 J greater than its internal energy, but it is
much more important to understand its significance than to note
small differences in numerical values.

It turns out that the energy released as heat by a system free
to expand or contract as a process occurs, as distinct from the
total energy released in the same process, is exactly equal to the
change in enthalpy of the system. That is, as if by magic—but
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actually by mathematics—the leakage of energy from a system
as work is automatically taken into account by focusing on the
change in enthalpy. In other words, the enthalpy is the basis
of a kind of accounting trick, which keeps track invisibly of the
work that is done by the system, and reveals the amount of
energy that is released only as heat, provided the system is free
to expand in an atmosphere that exerts a constant pressure on
the system.

It follows that if we are interested in the heat that can be
generated by the combustion of a fuel in an open container,
such as a furnace, then we use tables of enthalpies to calculate
the change in enthalpy that accompanies the combustion. This
change is written �H, where the Greek uppercase delta is used
throughout thermodynamics to denote a change in a quantity.
Then we identify that change with the heat generated by the
system. As an actual example, the change of enthalpy that
accompanies the combustion of a litre of gasoline is about
33 megajoules (1 megajoule, written 1 MJ, is 1 million joules).
Therefore we know without any further calculation that burning
a litre of gasoline in an open container will provide 33 MJ of
heat. A deeper analysis of the process shows that in the same
combustion, the system has to do about 130 kJ (where 1 kilojoule,
written 1 kJ, is one thousand joules) of work to make room for
the gases that are generated, but that energy is not available to us
as heat.

We could extract that extra 130 kJ, which is enough to heat about
half a litre of water from room temperature to its boiling point, if
we prevent the gases from expanding so that all the energy
released in the combustion is liberated as heat. One way to achieve
that, and to obtain all the energy as heat, would be to arrange for
the combustion to take place in a closed container with rigid walls,
in which case it would be unable to expand and hence would be
unable to lose any energy as work. In practice, it is technologically
much simpler to use furnaces that are open to the atmosphere,
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and in practice the difference between the two cases is too small to
be worth the effort. However, in formal thermodynamics, which is
a precise and logical subject, it is essential to do all the energy
accounting accurately and systematically. In formal
thermodynamics the differences between changes in internal
energy and enthalpy must always be borne in mind.

The vaporization of a liquid requires an input of energy because
its molecules must be separated from one another. This energy
is commonly supplied in the form of heat—that is, by making
use of a temperature difference between the liquid and its
surroundings. In former times, the extra energy of the vapour
was termed the ‘latent heat’, because it was released when the
vapour re-condensed to a liquid and was in some sense ‘latent’
in the vapour. The scalding effect of steam is an illustration. In
modern thermodynamic terms, the supply of energy as heat is
identified with the change in enthalpy of the liquid, and the
term ‘latent heat’ has been replaced by enthalpy of vaporization.
The enthalpy of vaporization of 1 g of water is close to 2 kJ. The
condensation of 1 g of steam therefore releases 2 kJ of heat,
which may be enough to destroy the proteins of our skin where it
comes in contact. There is a corresponding term for the heat
required to melt a solid: the ‘enthalpy of fusion’. Gram-for-gram,
the enthalpy of fusion is much less than the enthalpy of
vaporization, and we do not get scalded by touching water that is
freezing to ice.

Heat capacity

We saw in Chapter 1 in the context of the zeroth law that
‘temperature’ is a parameter that tells us the occupation of the
available energy levels of the system. Our task now is to see how
this zeroth-law property relates to the first-law property of
internal energy and the derived heat-accounting property of
enthalpy.
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As the temperature of a system is raised and the Boltzmann
distribution acquires a longer tail, populations migrate from states
of lower energy to states of higher energy. Consequently, the
average energy rises, for its value takes into account the energies
of the available states and the numbers of molecules that occupy
each one. In other words, as the temperature is raised, so the
internal energy rises. The enthalpy rises too, but we don’t need to
focus on that separately as it more or less tracks the changes in
internal energy.

The slope of a graph of the value of the internal energy plotted
against temperature is called the heat capacity of the system
(symbol C ). To be almost precise, the heat capacity is defined as
C = (heat supplied)/(resulting temperature rise). The supply of 1 J
of energy as heat to 1 g of water results in an increase in
temperature of about 0.2◦C. Substances with a high heat capacity
(water is an example) require a larger amount of heat to bring
about a given rise in temperature than those with a small heat
capacity (air is an example). In formal thermodynamics, the
conditions under which heating takes place must be specified. For
instance, if the heating takes place under conditions of constant
pressure with the sample free to expand, then some of the energy
supplied as heat goes into expanding the sample and therefore to
doing work. Less energy remains in the sample, so its temperature
rises less than when it is constrained to have a constant volume,
and therefore we report that its heat capacity is higher. The
difference between heat capacities of a system at constant volume
and at constant pressure is of most practical significance for gases,
which undergo large changes in volume as they are heated in
vessels that are able to expand.

Heat capacities vary with temperature. An important
experimental observation that will play an important role in the
following chapter is that the heat capacity of every substance
falls to zero when the temperature is reduced towards absolute
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zero (T = 0). A very small heat capacity implies that even a
tiny transfer of heat to a system results in a significant rise in
temperature, which is one of the problems associated with
achieving very low temperatures when even a small leakage of
heat into a sample can have a serious effect on the temperature
(see Chapter 5).

We can get insight into the molecular origin of heat capacity
by thinking—as always—about the distribution of molecules
over the available states. There is a deep theorem of physics called
the fluctuation–dissipation theorem, which implies that the
ability of a system to dissipate (essentially, absorb) energy is
proportional to the magnitudes of the fluctuations about its mean
value in a corresponding property. Heat capacity is a dissipation
term: it is a measure of the ability of a substance to absorb the
energy supplied to it as heat. The corresponding fluctuation
term is the spread of populations over the energy states of the
system. When all the molecules of a system are in a single state,
there is no spread of populations and the ‘fluctuation’ in
population is zero; correspondingly the heat capacity of the
system is zero. As we saw in Chapter 1, at T = 0 only the lowest
state of the system is occupied, so we can conclude from the
fluctuation–dissipation theorem that the heat capacity will be zero
too, as is observed. At higher temperatures, the populations are
spread over a range of states and hence the heat capacity is
non-zero, as is observed.

In most cases, the spread of populations increases with increasing
temperature, so the heat capacity typically increases with rising
temperature, as is observed. However, the relationship is a little
more complex than that because it turns out that the role of the
spread of populations decreases as the temperature rises, so
although that spread increases, the heat capacity does not increase
as fast. In some cases, the increasing spread is balanced exactly by
the decrease in the proportionality constant that relates the spread
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to the heat capacity, and the heat capacity settles into a constant
value. This is the case for the contribution of all the basic modes of
motion: translation (motion through space), rotation, and
vibration of molecules, all of which settle into a constant value.

To understand the actual values of the heat capacity of a substance
and the rise in internal energy as the temperature is raised we first
need to understand how the energy levels of a substance depend
on its structure. Broadly speaking, the energy levels lie close
together when the atoms are heavy. Moreover, translational energy
levels are so close together as to form a near continuum, the
rotational levels of molecules in gases are further apart, and
vibrational energy levels—those associated with the oscillations of
atoms within molecules—are widely separated. Thus, as a gaseous
sample is heated, the molecules are readily excited into higher
translational states (in English: they move faster) and, in all
practical cases, they quickly spread over many rotational states (in
English: they rotate faster). In each case the average energy of the
molecules, and hence the internal energy of the system, increases
as the temperature is raised.

The molecules of solids are free neither to move through space nor
to rotate. However, they can oscillate around their average
positions, and take up energy that way. These collective wobblings
of the entire solid have much lower frequencies than the
oscillations of atoms within molecles and so they can be excited
much more readily. As energy is supplied to a solid sample, these
oscillations are excited, the populations of the higher energy states
increase as the Boltzmann distribution reaches to higher levels,
and we report that the temperature of the solid has risen. Similar
remarks apply to liquids, in which molecular motion is less
constrained than in solids. Water has a very high heat capacity,
which means that to raise its temperature takes a lot of energy.
Conversely, hot water stores a lot of energy, which is why it is such
a good medium for central heating systems (as well as being
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cheap), and why the oceans are slow to heat and slow to cool, with
important implications for our climate.

As we have remarked, the internal energy is simply the total
energy of the system, the sum of the energies of all the molecules
and their interactions. It is much harder to give a molecular
interpretation of enthalpy because it is a property contrived to do
the bookkeeping of expansion work and is not as fundamental a
property as internal energy. For the purposes of this account, it is
best to think of the enthalpy as a measure of the total energy, but
to bear in mind that that is not exactly true. In short, as the
temperature of a system is raised its molecules occupy higher and
higher energy levels and as a result their mean energy, the internal
energy, and the enthalpy all increase. Precise fundamental
molecular interpretations can be given only of the fundamental
properties of a system, its temperature, its internal energy,
and—as we shall see in the next chapter—the entropy. They
cannot be given for ‘accounting’ properties, properties that have
simply been contrived to make calculations easier.

Energy and the uniformity of time

The first law is essentially based on the conservation of energy, the
fact that energy can be neither created nor destroyed.
Conservation laws—laws that state that a certain property does
not change—have a very deep origin, which is one reason why
scientists, and thermodynamicists in particular, get so excited
when nothing happens. There is a celebrated theorem, Noether’s
theorem, proposed by the German mathematician Emmy Noether
(1882–1935), which states that to every conservation law there
corresponds a symmetry. Thus, conservation laws are based on
various aspects of the shape of the universe we inhabit. In the
particular case of the conservation of energy, the symmetry is that
of the shape of time. Energy is conserved because time is uniform:
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time flows steadily, it does not bunch up and run faster then
spread out and run slowly. Time is a uniformly structured
coordinate. If time were to bunch up and spread out, energy would
not be conserved. Thus, the first law of thermodynamics is based
on a very deep aspect of our universe and the early
thermodynamicists were unwittingly probing its shape.
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Chapter 3

The second law

The increase in entropy

When I gave lectures on thermodynamics to an undergraduate
chemistry audience I often began by saying that no other scientific
law has contributed more to the liberation of the human spirit
than the second law of thermodynamics. I hope that you will see in
the course of this chapter why I take that view, and perhaps go so
far as to agree with me.

The second law has a reputation for being recondite, notoriously
difficult, and a litmus test of scientific literacy. Indeed, the
novelist and former chemist C. P. Snow is famous for having
asserted in his The Two Cultures that not knowing the second law
of thermodynamics is equivalent to never having read a work by
Shakespeare. I actually have serious doubts about whether Snow
understood the law himself, but I concur with his sentiments. The
second law is of central importance in the whole of science, and
hence in our rational understanding of the universe, because it
provides a foundation for understanding why any change occurs.
Thus, not only is it a basis for understanding why engines run and
chemical reactions occur, but it is also a foundation for
understanding those most exquisite consequences of chemical
reactions, the acts of literary, artistic, and musical creativity that
enhance our culture.
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As we have seen for the zeroth and first laws, the formulation and
interpretation of a law of thermodynamics leads us to introduce a
thermodynamic property of the system: the temperature, T,
springs from the zeroth law and the internal energy,U, from the
first law. Likewise, the second law implies the existence of another
thermodynamic property, the entropy (symbol S). To fix our ideas
in the concrete at an early stage it will be helpful throughout this
account to bear in mind that whereasU is a measure of the
quantity of energy that a system possesses, S is a measure of the
quality of that energy: low entropy means high quality; high
entropy means low quality. We shall elaborate this interpretation
and show its consequences in the rest of the chapter. At the end of
it, with the existence and properties of T,U, and S established, we
shall have completed the foundations of classical thermodynamics
in the sense that the whole of the subject is based on these three
properties.

A final point in this connection, one that will pervade this chapter,
is that power in science springs from abstraction. Thus, although a
feature of nature may be established by close observation of a
concrete system, the scope of its application is extended
enormously by expressing the observation in abstract terms.
Indeed, we shall see in this chapter that although the second law
was established by observations on the lumbering cast-iron reality
of a steam engine, when expressed in abstract terms it applies to
all change. To put it another way, a steam engine encapsulates the
nature of change whatever the concrete (or cast-iron) realization
of that change. All our actions, from digestion to artistic creation,
are at heart captured by the essence of the operation of a steam
engine.

Heat engines

A steam engine, in its actual but not abstract form, is an iron
fabrication, with boiler, valves, pipes, and pistons. The essence
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of a steam engine, though, is somewhat simpler: it consists of a
hot (that is, high temperature) source of energy, a device—a
piston or turbine—for converting heat into work, and a cold
sink, a place for discarding any unused energy as heat. The last
item, the cold sink, is not always readily discernible, for it might
just be the immediate environment of the engine, not something
specifically designed.

In the early nineteenth century, the French were anxiously
observing from across the Channel England’s industrialization
and becoming envious of her increasing efficiency at using her
abundant supplies of coal to pump water from her mines and
drive her emerging factories. A young French engineer, Sadi
Carnot (1796–1832), sought to contribute to his country’s
economic and military might by analysing the constraints on
the efficiency of a steam engine. Popular wisdom at the time
looked for greater efficiency in choosing a different working
substance—air, perhaps, rather than steam—or striving to work at
dangerously higher pressures. Carnot took the then accepted view
that heat was a kind of imponderable fluid that, as it flowed from
hot to cold, was able to do work, just as water flowing down a
gradient can turn a water mill. Although his model was wrong,
Carnot was able to arrive at a correct and astonishing result: that
the efficiency of a perfect steam engine is independent of the
working substance and depends only on the temperatures at
which heat is supplied from the hot source and discarded into the
cold sink.

The ‘efficiency’ of a steam engine—in general, a heat engine—is
defined as the ratio of the work it produces to the heat it absorbs.
Thus, if all the heat is converted into work, with none discarded,
the efficiency is 1. If only half the supplied energy is converted into
work, with the remaining half discarded into the surroundings,
then the efficiency is 0.5 (which would commonly be reported as a
percentage, 50 per cent). Carnot was able to derive the following
expression for the maximum efficiency of an engine working
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between the absolute temperatures Tsource and Tsink:

Efficiency = 1 − Tsink
Tsource

This remarkably simple formula applies to any
thermodynamically perfect heat engine regardless of its physical
design. It gives the maximum theoretical efficiency, and no
tinkering with a sophisticated design can increase the efficiency of
an actual heat engine beyond this limit.

For instance, suppose a power station provided superheated steam
to its turbines at 300◦C (corresponding to 573 K) and allows the
waste heat to spread into the surroundings at 20◦C (293 K), the
maximum efficiency is 0.46, so only 46 per cent of the heat
supplied by the burning fuel can be converted into electricity, and
no amount of sophisticated engineering design can improve on
that figure given the two temperatures. The only way to improve
the conversion efficiency would be to lower the temperature of the
surroundings, which in practice is not possible in a commercial
installation, or to use steam at a higher temperature. To achieve
100 per cent efficiency, the surroundings would have to be at
absolute zero (Tsink = 0) or the steam would have to be infinitely
hot (Tsource = ∞), neither of which is a practical proposition.

Carnot’s analysis established a very deep property of heat engines,
but its conclusion was so alien to the engineering prejudices of the
time that it had little impact. Such is often the fate of rational
thought within society, sent as it may be to purgatory for a spell.
Later in the century, and largely oblivious of Carnot’s work,
interest in heat was rekindled and two intellectual giants strode
on to the stage and considered the problem of change, and in
particular the conversion of heat into work, from a new
perspective.

The first giant, William Thomson, later Lord Kelvin (1824–1907),
reflected on the essential structure of heat engines. Whereas lesser
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9. The Kelvin (left) and Clausius (right) observations are, respectively,
that a cold sink is essential to the operation of a heat engine and that
heat does not flow spontaneously from a cooler to a hotter body

minds might view the heat source as the crucial component, or
perhaps the vigorously reciprocating piston, Kelvin—as we shall
slightly anachronistically call him—saw otherwise: he identified
the invisible as indispensible, seeing that the cold sink—often just
the undesigned surroundings—is essential. Kelvin realized that to
take away the surroundings would stop the heat engine in its
tracks. To be more precise, the Kelvin statement of the second law
of thermodynamics is as follows (Figure 9):

no cyclic process is possible in which heat is taken from a hot source
and converted completely into work.

In other words, Nature exerts a tax on the conversion of heat into
work, some of the energy supplied by the hot source must be paid
into the surroundings as heat. There must be a cold sink, even
though we might find it hard to identify and it is not always an
engineered part of the design. The cooling towers of a generating
station are, in this sense, far more important to its operation than
the complex turbines or the expensive nuclear reactor that seems
to drive them.

The second giant was Rudolph Clausius (1822–1888), working in
Berlin. He reflected on a simpler process, the flow of heat between
bodies at different temperatures. He recognized the everyday
phenomenon that energy flows as heat spontaneously from a body
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at a high temperature to one at a lower temperature. The word
‘spontaneous’ is another of those common words that has been
captured by science and dressed in a more precise meaning. In
thermodynamics spontaneousmeans not needing to be driven by
doing work of some kind. Broadly speaking, ‘spontaneous’ is a
synonym of ‘natural’. Unlike in everyday language, spontaneous in
thermodynamics has no connotation of speed: it does not mean
fast. Spontaneous in thermodynamics refers to the tendency for
a change to occur. Although some spontaneous processes are
fast (the free expansion of a gas for instance) some may be
immeasurably slow (the conversion of diamond into graphite, for
instance). Spontaneity is a thermodynamic term that refers to a
tendency, not necessarily to its actualization. Thermodynamics is
silent on rates. For Clausius, there is a tendency for energy to flow
as heat from high temperature to low, but the spontaneity of that
process might be thwarted if an insulator lies in the way.

Clausius went on to realize that the reverse process, the transfer
of heat from a cold system to a hotter one—that is, from a system
at a low temperature to one at a higher temperature—is not
spontaneous. He thereby recognized an asymmetry in
Nature: although energy has a tendency to migrate as heat from
hot to cold, the reverse migration is not spontaneous. This
somewhat obvious statement he formulated into what is now
known as the Clausius statement of the second law of
thermodynamics (Figure 9):

heat does not pass from a body at low temperature to one at high

temperature without an accompanying change elsewhere.

In other words, heat can be transferred in the ‘wrong’
(non-spontaneous) direction, but to achieve that transfer work
must be done. That is an everyday observation: we can cool objects
in a refrigerator, which involves transferring heat from them and
depositing it in the warmer surroundings, but to do so, we have to
do work—the refrigerator must be driven by connecting it to a
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power supply, and the ultimate change elsewhere in the
surroundings that drives the refrigeration is the combustion of
fuel in a power station that may be far away.

The Kelvin and the Clausius statements are both summaries of
observations. No one has ever built a working heat engine without
a cold sink, although they might not have realized one was
present. Nor have they observed a cool object spontaneously
becoming hotter than its surroundings. As such, their statements
are indeed laws of Nature in the sense that I am using the term as
a summary of exhaustive observations. But are there two second
laws? Why is Kelvin’s, for instance, not called the second law and
Clausius’s the third?

The answer is that the two statements are logically equivalent.
That is, Kelvin’s statement implies Clausius’s and Clausius’s
statement implies Kelvin’s. I shall now demonstrate both sides of
this equivalence.

First, imagine coupling two engines together (Figure 10). The two
engines share the same hot source. Engine A has no cold sink, but
engine B does. We use engine A to drive engine B. We run engine
A, and for the moment presume, contrary to Kelvin’s statement,
that all the heat that A extracts from the hot source is converted
into work. That work is used to drive the transfer of heat from the
cold sink of engine B into the shared hot sink. The net effect is the
restoration of the energy to the hot sink in addition to whatever
engine B transferred out of its cold sink. That is, heat has been
transferred from cold to hot with no change elsewhere, which is
contrary to Clausius’s statement. Therefore, if Kelvin’s statement
were ever found to be false, then Clausius’s statement would be
falsified too.

Now consider the implication of a failure of Clausius’s statement.
We build an engine with a hot source and a cold sink, and run the
engine to produce work. In the process we discard some heat into
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10. The equivalence of the Kelvin and Clausius statements. The
diagram on the left depicts the fact that the failure of the Kelvin
statement implies the failure of the Clausius statement. The diagram
on the right depicts the fact that the failure of the Clausius statement
implies the failure of the Kelvin statement

the cold sink. However, as a cunning part of the design we have
also arranged for exactly the same amount of heat that we
discarded into the cold sink to return spontaneously, contrary to
Clausius’s statement, to the hot source. Now the net effect of this
arrangement is the conversion of heat into work with no other
change elsewhere, for there is no net change in the cold sink,
which is contrary to Kelvin’s statement. Thus, if Clausius’s
statement were ever found to be false, then Kelvin’s statement
would be falsified too.

We have seen that the falsification of each statement of the second
law implies the other, so logically the two statements are
equivalent, and we can treat either as an equivalent
phenomenological (observation-based) statement of the second
law of thermodynamics.

The definition of absolute temperature

An interesting side issue is that the discussion so far enables us to
set up a temperature scale that is based purely on mechanical
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observations, with the notion of a thermometer built solely
from weights, ropes, and pulleys. You will recall that the zeroth
law implied the existence of a property that we call the
temperature, but apart from the arbitrary scales of Celsius and
Fahrenheit, and a mention of the existence of a more fundamental
thermodynamic scale, the definition was left hanging. Kelvin
realized that he could define a temperature scale in terms of
work by using Carnot’s expression for the efficiency of a heat
engine.

We shall denote the efficiency, the work done divided by heat
absorbed, of a perfect heat engine by ε (the Greek letter epsilon).
The work done by the engine can be measured by observing the
height through which a known weight is raised, as we have already
seen in the discussion of the first law. The heat absorbed by the
engine can also, in principle at least, be measured by measuring
the fall in a weight. Thus, as we saw in Chapter 2, the transfer of
energy as heat can be measured by observing how much work
must be done to achieve a given change of state in an adiabatic
container, then measuring the work that must be done to achieve
the same change in a diathermic container, and identifying the
difference of the two amounts of work as the heat transaction in
the second process. Thus, in principle, the efficiency of a heat
engine can be measured solely by observing the rise or fall of a
weight in a series of experiments.

Next, according to Carnot’s expression, which in terms of ε is
ε = 1 − Tsink/Tsource, we can write Tsink/Tsource = 1 − ε, or
Tsink = (1 − ε)Tsource. Therefore, to measure the temperature of
the cold sink we simply use our weights to measure the efficiency
of an engine that uses it. Thus, if we find ε = 0.240, then the
temperature of the cold sink must be 0.760Tsource.

This still leaves Tsource unspecified. We can choose a highly
reproducible system, one more reliable than Fahrenheit’s armpit,
and define its temperature as having a certain value, and use that

45



Th
e
La

w
s
o
fT

h
er
m
o
d
yn

am
ic
s

standard system as the hot source in the engine. In modern
work, a system in which pure liquid water is simultaneously in
equilibrium with both its vapour and ice, the so called triple

point of water, is defined as having a temperature of exactly
273.16 K. The triple point is a fixed property of water: it is
unaffected by any changes in the external conditions, such as
the pressure, so it is highly reproducible. Therefore, in our
example, if we measured by a series of observations on falling
weights the efficiency of a heat engine that had a hot source at the
temperature of the triple point of water, and found ε = 0.240, we
would be able to infer that the temperature of the cold sink was
0.760 × 273.16 K = 208 K (corresponding to −65◦C). The choice
of the triple point of water for defining the Kelvin scale is entirely
arbitrary, but it has the advantage that anyone in the galaxy can
replicate the scale without any ambiguity, because water has the
same properties everywhere without our having to adjust any
parameters.

The everyday Celsius scale is currently defined in terms of the
more fundamental thermodynamic scale by subtracting exactly
273.15 K from the Kelvin temperature. Thus, at atmospheric
pressure, water is found to freeze at 273 K (to be precise, at about
0.01 K below the triple point, at close to 273.15 K), which
corresponds to 0◦C. Water is found to boil at 373 K, corresponding
to close to 100◦C. However, these two temperatures are no longer
definitions, as they were when Anders Celsius proposed his scale
in 1742, and must be determined experimentally. Their precise
values are still open to discussion, but reliable values appear to be
273.152 518 K (+0.002 518◦C) for the normal freezing point of
water and 373.124 K (99.974◦C) for its normal boiling point.

A final point is that the thermodynamic temperature is also
occasionally called the ‘perfect gas temperature’. The latter name
comes from expressing temperature in terms of the properties of a
perfect gas, a hypothetical gas in which there are no interactions
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between the molecules. That definition turns out to be identical to
the thermodynamic temperature.

Introducing entropy

It is inelegant, but of practical utility, to have alternative
statements of the second law. Our challenge is to find a single
succinct statement that encapsulates them both. To do so, we
follow Clausius and introduce a new thermodynamic function, the
entropy, S. The etymology of the name, from the Greek words for
‘in turning’ is not particularly helpful; the choice of the letter S,
which does from its shape suggest an ‘in turning’ appears,
however, to be arbitrary, being a letter not used at the time for
other thermodynamic properties, conveniently towards the end of
the alphabet, and an unused neighbour of P , Q, R, T,U, V and W,
all of which had already been ascribed other duties.

For mathematically cogent reasons that need not detain us here,
Clausius defined a change in entropy of a system as the result of
dividing the energy transferred as heat by the (absolute,
thermodynamic) temperature at which the transfer took
place:

Change in entropy =
heat supplied reversibly

temperature

I have slipped in the qualification ‘reversibly’, because it is
important, as we shall see, that the transfer of heat be imagined as
carried out with only an infinitesimal difference in temperature
between the system and its surroundings. In short, it is important
not to stir up any turbulent regions of thermal motion.

We mentioned at the start of the chapter that entropy will turn out
to be a measure of the ‘quality’ of the stored energy. As this chapter
unfolds we shall see what ‘quality’ means. For our initial encounter
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with the concept, we shall identify entropy with disorder: if matter
and energy are distributed in a disordered way, as in a gas, then
the entropy is high; if the energy and matter are stored in an
ordered manner, as in a crystal, then the entropy is low. With
disorder in mind, we shall explore the implications of Clausius’s
expression and verify that it is plausible in capturing the entropy
as a measure of the disorder in a system.

The analogy I have used elsewhere to help make plausible
Clausius’s definition of the change in entropy is that of sneezing in
a busy street or in a quiet library. A quiet library is the metaphor
for a system at low temperature, with little disorderly thermal
motion. A sneeze corresponds to the transfer of energy as heat. In
a quiet library a sudden sneeze is highly disruptive: there is a big
increase in disorder, a large increase in entropy. On the other
hand, a busy street is a metaphor for a system at high temperature,
with a lot of thermal motion. Now the same sneeze will introduce
relatively little additional disorder: there is only a small increase in
entropy. Thus, in each case it is plausible that a change in entropy
should be inversely proportional to some power of the
temperature (the first power, T itself, as it happens; not T 2 or
anything more complicated), with the greater change in entropy
occurring the lower the temperature. In each case, the additional
disorder is proportional to the magnitude of the sneeze (the
quantity of energy transferred as heat) or some power of that
quantity (the first power, as it happens). Thus, Clausius’s
expression conforms to this simple analogy, and we should bear
the analogy in mind for the rest of the chapter as we see how to
apply the concept of entropy and enrich our interpretation of it.

A change in entropy is the ratio of energy (in joules) transferred as
heat to or from a system to the temperature (in kelvins) at which it
is transferred, so its units are joules per kelvin (J K−1). For
instance, suppose we immerse a 1 kW heater in a tank of water at
20◦C (293 K), and run the heater for 10 s, we increase the entropy
of the water by 34 J K−1. If 100 J of energy leaves a flask of water
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at 20◦C, its entropy falls by 0.34 J K−1. The entropy of a cup
(200 ml) of boiling water—it can be calculated by a slightly more
involved procedure—is about 200 J K−1 higher than at room
temperature.

Now we are ready to express the second law in terms of the
entropy and to show that a single statement captures the Kelvin
and Clausius statements. We begin by proposing the following as a
statement of the second law:

the entropy of the universe increases in the course of any
spontaneous change.

The key word here is universe: it means, as always in
thermodynamics, the system together with its surroundings.
There is no prohibition of the system or the surroundings
individually undergoing a decrease in entropy provided that there
is a compensating change elsewhere.

To see that Kelvin’s statement is captured by the entropy
statement, we consider the entropy changes in the two parts of a
heat engine that has no cold sink (Figure 11). When heat leaves the
hot source, there is a decrease in the entropy of the system. When
that energy is transferred to the surroundings as work, there is no
change in the entropy because changes in entropy are defined in
terms of the heat transferred, not the work that is done. We shall
understand that point more fully later, when we turn to the
molecular nature of entropy. There is no other change. Therefore,
the overall change is a decrease in the entropy of the universe,
which is contrary to the second law. It follows that an engine with
no cold sink cannot produce work.

To see that an engine with a cold sink can produce work, we think
of an actual heat engine. As before, there is a decrease in entropy
when energy leaves the hot sink as heat and there is no change in
entropy when some of that heat is converted into work. However,
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11. An engine like that denied by Kelvin’s statement (left) implies a
reduction in entropy and is not viable. On the right is shown the
consequence of providing a cold sink and discarding some heat into it.
The increase in entropy of the sink may outweigh the reduction of
entropy of the source, and overall there is an increase in entropy. Such
an engine is viable

provided we do not convert all the energy into work, we can
discard some into the cold sink as heat. There will now be an
increase in the entropy of the cold sink, and provided its
temperature is low enough—that is, it is a quiet enough
library—even a small deposit of heat into the sink can result in an
increase in its entropy that cancels the decrease in entropy of the
hot source. Overall, therefore, there can be an increase in entropy
of the universe, but only provided there is a cold sink in which to
generate a positive contribution. That is why the cold sink is the
crucial part of a heat engine: entropy can be increased only if the
sink is present, and the engine can produce work from heat only if
overall the process is spontaneous. It is worse than useless to have
to drive an engine to make it work!

It turns out, as may be quite readily shown, that the fraction of
energy withdrawn from the hot source that must be discarded into
the cold sink, and which therefore is not available for converting
into work, depends only on the temperatures of the source and
sink. Moreover, the minimum energy that must be discarded, and
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therefore the achievement of the maximum efficiency of
conversion of heat into work, is given precisely by Carnot’s
formula. Suppose q leaves the hot source as heat: the entropy falls
by q/Tsource. Suppose q′ is discarded into the cold sink: the entropy
increases by q′/Tsink. For the overall change in entropy to be
positive, the minimum amount of heat to discard is such that
q′/Tsink = q/Tsource, and therefore q′ = qT sink/Tsource. That means
that the maximum amount of work that can be done is q − q′, or
q(1 − Tsink/Tsource). The efficiency is this work divided by the heat
supplied (q), which gives efficiency = 1 − Tsink/Tsource, which is
Carnot’s formula.

Now consider the Clausius statement in terms of entropy.
If a certain quantity of energy leaves the cold object as heat,
the entropy decreases. This is a large decrease, because the object
is cold—it is a quiet library. The same quantity of heat enters
the hot object. The entropy increases, but because the temperature
is higher—the object is a busy street—the resulting increase in
entropy is small, and certainly smaller than the decrease in entropy
of the cold object. Overall, therefore, there is a decrease in entropy,
and the process is not spontaneous, exactly as Clausius’s statement
implies.

Thus, we see that the concept of entropy captures the two
equivalent phenomenological statements of the second law and
acts as the signpost of spontaneous change. The first law and the
internal energy identify the feasible change among all conceivable
changes: a process is feasible only if the total energy of the
universe remains the same. The second law and entropy identify
the spontaneous changes among these feasible changes: a feasible
process is spontaneous only if the total entropy of the universe
increases.

It is of some interest that the concept of entropy greatly troubled
the Victorians. They could understand the conservation of energy,
for they could presume that at the Creation God had endowed the
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world with what He would have judged infallibly as exactly the
right amount, an amount that would be appropriate for all time.
What were they to make of entropy, though, which somehow
seemed to increase ineluctably. Where did this entropy spring
from? Why was there not an exact, perfectly and eternally judged
amount of the God-given stuff?

To resolve these matters and to deepen our understanding of the
concept, we need to turn to the molecular interpretation of
entropy and its interpretation as a measure, in some sense,
of disorder.

Images of disorder

With entropy as a measure of disorder in mind, the change in
entropy accompanying a number of processes can be predicted
quite simply, although the actual numerical change takes more
effort to calculate than we need to display in this introduction. For
example, the isothermal (constant temperature) expansion of a
gas distributes its molecules and their constant energy over a
greater volume, the system is correspondingly less ordered in the
sense that we have less chance of predicting successfully where a
particular molecule and its energy will be found, and the entropy
correspondingly increases.

A more sophisticated way of arriving at the same conclusion, and
one that gives a more accurate portrayal of what ‘disorder’ actually
means, is to think of the molecules as distributed over the energy
levels characteristic of particles in a box-like region. Quantum
mechanics can be used to calculate these allowed energy levels
(it boils down to computing the wavelengths of the standing
waves that can fit between rigid walls, and then interpreting the
wavelengths as energies). The central result is that as the walls of
the box are moved apart, the energy levels fall and become less
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12. The increase in entropy of a collection of particles in an expanding
box-like region arises from the fact that as the box expands, the
allowed energies come closer together. Provided the temperature
remains the same, the Boltzmann distribution spans more energy
levels, so the chance of choosing a molecule from one level in a blind
selection decreases. That is, the disorder and the entropy increase as
the gas occupies a greater volume

widely separated (Figure 12). At room temperature, billions of
these energy levels are occupied by the molecules, the distribution
of populations being given by the Boltzmann distribution
characteristic of that temperature. As the box expands, the
Boltzmann distribution spreads over more energy levels and it
becomes less probable that we can specify which energy level a
molecule would come from if we made a blind selection of
molecules. This increased uncertainty of the precise energy level a
molecule occupies is what we really mean by the ‘disorder’ of the
system, and corresponds to an increased entropy.

A similar picture accounts for the change in entropy as the
temperature of a gaseous sample is raised. A simple calculation in
classical thermodynamics based on Clausius’s definition leads us
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to expect an increase in entropy with temperature. That increase
in molecular terms can be understood, because as the temperature
increases at constant volume, the Boltzmann distribution acquires
a longer tail, corresponding to the occupation of a wider range of
energy levels. Once again, the probability that we can predict
which energy level a molecule comes from in a blind selection
corresponds to an increase in disorder and therefore to a higher
entropy.

This last point raises the question of the value of the entropy
at the absolute zero of temperature (at T = 0). According to the
Boltzmann distribution, at T = 0 only the lowest state (the
‘ground state’) of the system is occupied. That means that we can
be absolutely certain that in a blind selection we will select a
molecule from that single ground state: there is no uncertainty in
the distribution of energy, and the entropy is zero.

These considerations were put on a quantitative basis by Ludwig
Boltzmann, who proposed that the so-called absolute entropy of
any system could be calculated from a very simple formula:

S = k log W

The constant k is Boltzmann’s constant, which we encountered
in Chapter 1 in the relation between ‚ and T, namely ‚

= 1/kT, and appears here simply to ensure that changes in entropy
calculated from this equation have the same numerical value
as those calculated from Clausius’s expression. Of much greater
significance is the quantityW, which is a measure of the number of
ways that the molecules of a system can be arranged to achieve the
same total energy (the ‘weight’ of an arrangement). This expression
is much harder to implement than the classical thermodynamic
expression, and really belongs to the domain of statistical
thermodynamics, which is not the subject of this volume. Suffice
it to say that Boltzmann’s formula can be used to calculate both
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the absolute entropies of substances, especially if they have simple
structures, like a gas, and changes in entropy that accompany
various changes, such as expansion and heating. In all cases,
the expressions for the changes in entropy correspond exactly to
those deduced from Clausius’s definition, and we can be confident
that the classical entropy and the statistical entropy are the same.

It is an incidental footnote of a personal history that the equation
S = k log W is inscribed on Boltzmann’s tombstone as his
wonderful epitaph, even though he never wrote down the equation
explicitly (it is due to Max Planck). He deserves his constant even
if we do not.

Degenerate solids

There are various little wrinkles in the foregoing about which we
now need to own up. Because the Clausius expression tells us only
the change in entropy, it allows us to measure the entropy of a
substance at room temperature relative to its value at
T = 0. In many cases the value calculated for room temperature
corresponds within experimental error to the value calculated
from Boltzmann’s formula using data about molecules obtained
from spectroscopy, such as bond lengths and bond angles. In some
cases, however, there is a discrepancy, and the thermodynamic
entropy differs from the statistical entropy.

We have assumed without comment that there is only one state of
lowest energy; one ground state, in which case W = 1 at
T = 0 and the entropy at that temperature is zero. That is, in the
technical parlance of quantum mechanics, we assumed that the
ground state was ‘non-degenerate’. In quantum mechanics, the
term ‘degeneracy’, another hijacked term, refers to the possibility
that several different states (for instance, planes of rotation or
direction of travel) correspond to the same energy. In some cases,
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that is not true, and in such cases there may be many different
states of the system corresponding to the lowest energy. We could
say that the ground states of these systems are highly degenerate
and denote the number of states that correspond to that lowest
energy as D. (I give a visualizable example in a moment.) If there
are D such states, then even at absolute zero we have only 1 chance
in D of predicting which of these degenerate states a molecule will
come from in a blind selection. Consequently, there is disorder in
the system even at T = 0 and its entropy is not zero. This non-zero
entropy of a degenerate system at T = 0 is called the residual
entropy of the system.

Solid carbon monoxide provides one of the simplest examples
of residual entropy. A carbon monoxide molecule, CO, has a
highly uniform distribution of electric charge (technically, it
has only a very tiny electric dipole moment), and there is little
difference in energy if in the solid the molecules lie . . . CO CO
CO . . . , or . . . CO OC CO . . . , or any other random arrangement
of direction. In other words, the ground state of a solid sample
of carbon monoxide is highly degenerate. If each molecule can
lie in one of two directions, and there are N molecules in the
sample, then D = 2N . Even in 1 g of solid carbon monoxide
there are 2 × 1022 molecules, so this degeneracy is far from
negligible! (Try calculating the value of D.) The value of the
residual entropy is k log D, which works out to 0.21 J K−1 for
a 1 g sample, in good agreement with the value inferred from
experiment.

Solid carbon monoxide might seem to be a somewhat rarefied
example and of little real interest except as a simple illustration.
There is one common substance, though, of considerable
importance that is also highly degenerate in its ground state: ice.
We do not often think—perhaps ever—of ice being a degenerate
solid, but it is, and the degeneracy stems from the location of the
hydrogen atoms around each oxygen atom.
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13. The residual entropy of water, reflecting its ‘degeneracy’ at T = 0,
arises from the variation in the locations of hydrogen atoms (the small
white spheres) between oxygen atoms (the shaded spheres). Although
each oxygen atom is closely attached to two hydrogen atoms andmakes
a more distant link to a hydrogen atom of each of two neighbouring
water molecules, there is some freedom in the choice of which links are
close and which are distant. Two of the many arrangements are shown
here

Figure 13 shows the origin of ice’s degeneracy. Each water
molecule is H2O, with two short, strong O–H bonds at about 104◦

to each other. The molecule is electrically neutral overall, but the
electrons are not distributed uniformly, and each oxygen atom has
patches of net negative charge on either side of the molecule, and
each hydrogen atom is slightly positively charged on account of
the withdrawal of electrons from it by the electron-hungry oxygen
atom. In ice, each water molecule is surrounded by others in a
tetrahedral arrangement, but the slightly positively charged
hydrogen atoms of one molecule are attracted to one of the
patches of slight negative charge on the oxygen atom of a
neighbouring water molecule. This link between molecules is
called a hydrogen bond, and is denoted O–H· · ·O. The link is
responsible for the residual entropy of ice, because there is a
randomness in whether any particular link is O–H· · ·O or
O· · ·H–O. Each water molecule must have two short O–H bonds
(so that it is recognizable as an H2O molecule), and two H· · ·O
links to two neighbours, but which two are short and which two
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are long is almost random. When the statistics of this variability is
analysed, it turns out that the residual entropy of 1 g of ice should
be 0.19 J K−1, in good agreement with the value inferred from
experiment.

Refrigerators and heat pumps

The concept of entropy is the foundation of the operation of heat
engines, heat pumps, and refrigerators. We have already seen that
a heat engine works because heat is deposited in a cold sink and
generates disorder there that compensates, and in general more
than compensates, for any reduction in entropy due to the
extraction of energy as heat from the hot source. The efficiency of
a heat engine is given by the Carnot expression. We see from that
expression that the greatest efficiency is achieved by working with
the hottest possible source and the coldest possible sink.
Therefore, in a steam engine, a term that includes steam turbines
as well as classical piston-based engines, the greatest efficiency is
achieved by using superheated steam. The fundamental reason for
that design feature is that the high temperature of the source
minimizes the entropy reduction of the withdrawal of heat (to go
unnoticed, it is best to sneeze in a very busy street), so that least
entropy has to be generated in the cold sink to compensate for that
decrease, and therefore that more energy can be used to do the
work for which the engine is intended.

A refrigerator is a device for removing heat from
an object and transferring that heat to the surroundings. This
process does not occur spontaneously because it corresponds to
a reduction in total entropy. Thus, when a given quantity of heat is
removed from a cool body (a quiet library, in our sneeze analogy),
there is a large decrease in entropy. When that heat is released
into warmer surroundings, there is an increase in entropy,
but the increase is smaller than the original decrease because the
temperature is higher (it is a busy street). Therefore, overall there
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T
surroundings

14. The processes involved in a refrigerator and a heat pump. In a
refrigerator (left), the entropy of the warm surroundings is increased
by at least the amount by which the entropy of the system (the interior
of the refrigerator) is decreased; this increase is achieved by adding to
the flow of energy by doing work. In a heat pump (right), the same net
increase in entropy is achieved, but in this case the interest lies in the
energy supplied to the interior of the house

is a net decrease in entropy. We used the same argument in the
discussion of Clausius’s statement of the second law, which applies
directly to this arrangement. A crude restatement of Clausius’s
statement is that refrigerators don’t work unless you turn
them on.

In order to achieve a net increase of entropy, we must release more
energy into the surroundings than is extracted from the cool
object (we must sneeze more loudly in the busy street). To achieve
that increase, we must add to the flow of energy. This we can do by
doing work on the system, for the work we do adds to the energy
stream (Figure 14). When we do work the original energy
extracted from the cool body is augmented to heat + work, and
that total energy is released into the warmer surroundings. If
enough work is done on the system, the release of a large amount
of energy into the warm surroundings gives a large increase in
entropy and overall there is a net increase in entropy and the
process can occur. Of course, to generate the work to drive the
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refrigerator, a spontaneous process must occur elsewhere, as in a
distant power station.

The efficiency of refrigeration is reported as the ‘coefficient of
performance’ of the arrangement. This quantity is defined as the
ratio of the heat removed from a cool object to the work that must
be done in order to achieve that transfer. The higher the coefficient
of performance the less work we have to do to achieve a given
transfer—the less power we have to draw from the supply, so the
more efficient the refrigerator. By a calculation very similar to that
on p. 51, we can conclude that the best coefficient of performance
that can be achieved by any arrangement when the object (the
food) to be cooled is at a temperature Tcold and the surroundings
(the kitchen) is at Tsurroundings is

Coefficient of performance (refrigerator) =
1

Tsurroundings
Tcold

− 1

For instance, if the cold object is cold water at 0◦C (273 K) and the
refrigerator is in a room at 20◦C (293 K), then the coefficient of
performance is 14, and to remove 10 kJ of energy from the freezing
water, which is enough to freeze about 30 g of the water to ice,
under ideal conditions we need to do about 0.71 kJ of work. Actual
refrigerators are much less efficient than this thermodynamic
limit, not least because heat leaks in from outside and not all the
energy supplied to do work joins the energy stream. Air
conditioning is essentially refrigeration, and this calculation
indicates why it is so expensive—and environmentally
damaging—to run. It takes a lot of energy to fight Nature when
she wields the second law.

When a refrigerator is working, the energy released into the
surroundings is the sum of that extracted from the cooled object
and that used to run the apparatus. This remark is the basis of the
operation of a heat pump, a device for heating a region (such as
the interior of a house) by pumping heat from the outside into the
interior. A heat pump is essentially a refrigerator, with the cooled
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object the outside world and the heat transfer arranged to be in
the region to be heated. That is, our interest is in the back of the
refrigerator, not its interior. The coefficient of performance of a
heat pump is defined as the ratio of the total energy released as
heat into the region to be heated (at a temperature Tinterior), to the
work done in order to achieve that release. By the same type of
calculation as already done for the Carnot efficiency (and which in
this case is left to the reader), it turns out that the theoretical best
coefficient of performance when the region from which the heat is
extracted is at a temperature Tsurroundings is

Coefficient of performance (heat pump) =
1

1 − Tsurroundings
Tinterior

Therefore, if the region to be heated is at 20◦C (293 K) and the
surroundings are at 0◦C (273 K), the coefficient of performance is
15. Thus, to release 1000 J into the interior, we need do only 67 J
of work. In other words, a heat pump rated at 1 kW behaves like a
15 kW heater.

Abstracting steam engines

We began this chapter by asserting that we are all steam engines.
With a sufficiently abstract interpretation of ‘steam engine’, that is
most definitely true. Wherever structure is to be conjured from
disorder, it must be driven by the generation of greater disorder
elsewhere, so that there is a net increase in disorder of the
universe, with disorder understood in the sophisticated manner
that we have sketched. That is clearly true for an actual heat
engine, as we have seen. However, it is in fact universally true.

For instance, in an internal combustion engine, the combustion of
a hydrocarbon fuel results in the replacement of a compact liquid
by a mixture of gases that occupies a volume over 2000 times
greater (and still 600 times greater if we allow for the oxygen
consumed). Moreover, energy is released by the combustion, and
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that energy disperses into the surroundings. The design of the
engine captures this dispersal in disorder and uses it to build, for
instance, a structure from a less ordered pile of bricks, or drive an
electric current (an orderly flow of electrons) through a circuit.

The fuel might be food. The dispersal that corresponds to an
increase in entropy is the metabolism of the food and the dispersal
of energy and matter that that metabolism releases. The structure
that taps into that dispersal is not a mechanical chain of pistons
and gears, but the biochemical pathways within the body. The
structure that those pathways cause to emerge may be proteins
assembled from individual amino acids. Thus, as we eat, so we
grow. The structures may be of a different kind: they may be works
of art. For another structure that can be driven into existence by
coupling to the energy released by ingestion and digestion consists
of organized electrical activity within the brain constructed from
random electrical and neuronal activity. Thus, as we eat, we
create: we create works of art, of literature, and of understanding.

The steam engine, in its abstract form as a device that generates
organized motion (work) by drawing on the dissipation of energy,
accounts for all the processes within our body. Moreover, that
great steam engine in the sky, the Sun, is one of the great fountains
of construction. We all live off the spontaneous dissipation of its
energy, and as we live so we spread disorder into our
surroundings: we could not survive without our surroundings. In
his seventeenth century meditation, John Donne was
unknowingly expressing a version of the second law when he
wrote, two centuries before Carnot, Joule, Kelvin, and Clausius,
that no man is an island.
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Chapter 4

Free energy

The availability of work

Free energy? Surely not! How can energy be free? Of course, the
answer lies in a technicality. By free energy we do not mean that it
is monetarily free. In thermodynamics, the freedom refers to the
energy that is free to do work rather than just tumble out of a
system as heat.

We have seen that when a combustion occurs at constant pressure,
the energy that may be released as heat is given by the change of
enthalpy of the system. Although there may be a change in internal
energy of a certain value, the system in effect has to pay a tax to
the surroundings in the sense that some of that change in internal
energy must be used to drive back the atmosphere in order to
make room for the products. In such a case, the energy that can be
released as heat is less than the change in internal energy. It is also
possible for there to be a tax refund in the sense that if the
products of a reaction occupy less volume than the reactants, then
the system can contract. In this case, the surroundings do work on
the system, energy is transferred into it, and the system can release
more heat than is given by the change in internal energy: the
system recycles the incoming work as outgoing heat. The enthalpy,
in short, is an accounting tool for heat that takes into account
automatically the tax payable or repayable as work and lets us
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calculate the heat output without having to calculate the
contributions of work in a separate calculation.

The question that now arises is whether a system must pay a tax to
the surroundings in order to produce work. Can we extract the full
change in internal energy as work, or must some of that change be
transferred to the surroundings as heat, leaving less to be used to
do work? Must there be a tax, in the form of heat, that a system
has to pay in order to do work? Could there even be a tax refund in
the sense that we can extract more work than the change in
internal energy leads us to expect? In short, by analogy with the
role of enthalpy, is there a thermodynamic property that instead of
focusing on the net heat that a process can release focuses on the
net work instead?

We found the appropriate property for heat, the enthalpy, by
considering the first law. We shall find the appropriate property
for work by considering the second law and entropy, because a
process can do work only if it is spontaneous: non-spontaneous
processes have to be driven by doing work, so they are worse than
useless for producing work.

To identify spontaneous processes we must note the crucially
important aspect of the second law that it refers to the entropy of
the universe, the sum of the entropies of the system and the
surroundings. According to the second law, a spontaneous change
is accompanied by an increase in entropy of the universe. An
important feature of this emphasis on the universe is that a
process may be spontaneous, and work producing, even though it
is accompanied by a decrease in entropy of the system provided
that a greater increase occurs in the surroundings and the total
entropy increases. Whenever we see the apparently spontaneous
reduction of entropy, as when a structure emerges, a crystal forms,
a plant grows, or a thought emerges, there is always a greater
increase in entropy elsewhere than accompanies the reduction in
entropy of the system.
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To assess whether a process is spontaneous and therefore capable
of producing work, we have to assess the accompanying entropy
changes in both the system of interest and the surroundings. It is
inconvenient to have to do two separate calculations, one for the
system and one for the surroundings. Provided we are prepared to
restrict our interest to certain types of change, there is a way to
combine the two calculations into one and to carry out the
calculation by focusing on the properties of the system alone. By
proceeding in that way, we shall be able to identify the
thermodynamic property that we can use to assess the work that
can be extracted from a process without having to calculate the
‘heat tax’ separately.

Introducing the Helmholtz energy

The clever step is to realize that if we limit changes to those taking
place at constant volume and temperature, then the change in
entropy of the surroundings can be expressed in terms of the
change in internal energy of the system. That is because at
constant volume, the only way that the internal energy can change
in a closed system is to exchange energy as heat with the
surroundings, and that heat can be used to calculate the change in
entropy of the surroundings by using the Clausius expression for
the entropy.

When the internal energy of a constant-volume, closed system
changes by �U, the whole of that change in energy must be due to
a heat transaction with the surroundings. If there is an increase in
internal energy of the system (for instance, if �U = +100 J), then
heat equal to �U (that is, 100 J) must flow in from the
surroundings. The surroundings lose that amount of energy as
heat, and so their entropy changes by −�U/T, a decrease. If there
is a decrease in internal energy of the system, �U is negative (for
instance, if �U = −100 J) and an equal amount of heat (in this
case, 100 kJ) flows into the surroundings. Their entropy therefore
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increases by −�U/T (this is a positive quantity because �U is
negative whenU decreases). In either case, therefore, the total
change in entropy of the universe is �S (total) = �S − �U/T,
where �S is the change in entropy of the system. This expression
is in terms of the properties of the system alone. In a moment we
shall use it in the form −T�S (total) = �U − T�S, which is
obtained by multiplying both sides by −T and changing the order
of terms on the right.

To tidy up the calculation, we introduce a combination of the
internal energy and the entropy of the system called theHelmholtz

energy, denoted A, and defined as A = U − TS. The German
physiologist and physicist Hermann von Helmholtz (1821–1894),
after whom this property is named, was responsible for
formulating the law of conservation of energy as well as making
other major contributions to the science of sensation, colour
blindness, nerve propagation, hearing, and thermodynamics in
general.

At constant temperature a change in the Helmholtz energy stems
from changes inU and S, and �A = �U − T�S, exactly as we
have just found for −T�S(total). So, a change in A is just a
disguised form of the change in total entropy of the universe when
the temperature and volume of the system are constant. The
important implication of this conclusion is that, because
spontaneous changes correspond to positive changes (increases) in
the total entropy of the universe, provided we limit our attention
to processes at constant temperature and volume, spontaneous
changes correspond to a decrease in Helmholtz energy of the
system. The restriction of the conditions to constant temperature
and volume has allowed us to express spontaneity solely in terms
of the properties of the system: its internal energy, temperature,
and entropy.

It probably seems more natural that a spontaneous change
corresponds to a decrease in a quantity: in the everyday world,
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things tend to fall down, not up. However, don’t be misled by the
seductions of familiarity: the natural tendency of A to decrease is
just an artefact of its definition. Because the Helmholtz energy is a
disguised version of the total entropy of the universe, the change
in direction from ‘total entropy up’ to ‘Helmholtz energy down’
simply reflects how A is defined. If you examine the expression for
�A without its derivation in mind, you will see that a negative
value will be obtained if �U is negative (a lowering of internal
energy of the system) and �S is positive. You might then jump to
the conclusion that systems tend towards lower internal energy
and higher entropy. That would be a wrong interpretation. The
fact that a negative �U favours spontaneity stems from the fact
that it represents the contribution (through −�U/T) of the
entropy of the surroundings. The only criterion of spontaneous
change in thermodynamics is the increase in total entropy of the
universe.

As well as the Helmholtz energy being a signpost of spontaneous
change it has another important role: it tells us the maximum
work that can be extracted when a process occurs at constant
temperature. That should be quite easy to see: it follows from the
Clausius expression for the entropy (�S = qrev/T rearranged into
qrev = T�S ) that T�S is the heat transferred to the surroundings
in a reversible process; but �U is equal to the sum of the heat and
work transactions with the surroundings, and the difference left
after allowing for the heat transferred, the value of �U − T�S, is
the change in energy due to doing work alone. It is for this reason
that A is also known as the ‘work function’ and given the symbol A
(because Arbeit is the German word for work). More commonly,
though, A is called a free energy, suggesting that it indicates the
energy in a system that is free to do work.

The last point becomes clearer once we think about the molecular
nature of the Helmholtz energy. As we saw in Chapter 2, work is
uniform motion in the surroundings, as in the moving of all the
atoms of a weight in the same direction. The term TS that appears
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in the definition of A = U − TS has the dimensions of an energy,
and can be thought of as a measure of the energy that is stored in
a disordered way in the system for whichU is the total energy.
The differenceU − TS is therefore the energy that is stored in an
orderly way. We can then think of only the energy stored in an
orderly way as being available to cause orderly motion, that is,
work, in the surroundings. Thus, only the differenceU − TS of
the total energy and the ‘disordered’ energy is energy that is free
to do work.

A more precise way of understanding the Helmholtz energy is to
think about the significance of changes in its value. Suppose a
certain process occurs in a system that causes a change in internal
energy �U and happens to correspond to a decrease in entropy, so
�S is negative. The process will be spontaneous and able to
produce work only if the entropy of the surroundings increases by
a compensating amount, namely �S (Figure 15). For that increase
to occur, some of the change in internal energy must be released as
heat, for only heat transactions result in changes in entropy. To
achieve an increase in entropy of magnitude �S, according to the
Clausius expression, the system must release a quantity of heat of

15. On the left a process occurs in a system that causes a change in
internal energy �U and a decrease in entropy. Energy must be lost as
heat to the surroundings in order to generate a compensating entropy
there, so less than �U can be released as work. On the right, a process
occurs with an increase in entropy, and heat can flow in to the system
yet still correspond to an increase in total entropy; as a result, more
than �U can be released as work
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magnitude T�S. That means that only �U − T�S can be released
as work.

According to this discussion, T�S is a tax that the surroundings
demand from the system in order to compensate for the reduction
in entropy of the system, and only �U − T�S is left for the system
to pay out as work. However, suppose the entropy of the system
happens to increase in the course of the process. In that case the
process is already spontaneous, and no tax need be paid to
the surroundings. In fact, it is better than that, because the
surroundings can be allowed to supply energy as heat to the
system, because they can tolerate a decrease in entropy yet the
entropy of the universe will still increase. In other words, the
system can receive a tax refund. That influx of energy as heat
increases the internal energy of the system and the increase
can be used to do more work than in the absence of the influx.
That too, is captured by the definition of the Helmholtz energy, for
when �S is negative, −T�S is a positive quantity and adds to �U

rather than subtracting from it, and �A is bigger than �U. In this
case, more work can be extracted than we would expect if we
considered only �U.

Some numbers might give these considerations a sense of reality.
When 1 L of gasoline is burned it produces carbon dioxide and
water vapour. The change in internal energy is 33 MJ, which tells
us that if the combustion takes place at constant volume (in a
sturdy, sealed container), then 33 MJ will be released as heat. The
change in enthalpy is 0.13 MJ less than the change in internal
energy. This figure tells us that if the combustion takes place in a
vessel open to the atmosphere, then slightly less (0.13 MJ less, in
fact) than 33 MJ will be released as heat. Notice that less heat is
released in the second arrangement because 0.13 MJ has been
used to drive back the atmosphere to make room for the gaseous
products and so less is available as heat. The combustion is
accompanied by an increase in entropy because more gas is
produced than is consumed (sixteen CO2 molecules and eighteen
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H2O molecules are produced for every twenty-five O2 molecules
that are consumed, a net increase of nine gas molecules), and it
may be calculated that �S = +8 kJ K−1. It follows that the change
in Helmholtz energy of the system is −35 MJ. Thus, if the
combustion took place in an engine, the maximum amount of
work that could be obtained is 35 MJ. Note that this is larger than
the value of �U because the increase in entropy of the system has
opened the possibility of heat flowing into the system as a tax
refund and there being a corresponding decrease in the
surroundings yet leaving the change in total entropy positive. It is,
perhaps, refreshing to note that you get a tax refund for every mile
you drive; but this is Nature’s refund, not the Chancellor’s.

Introducing the Gibbs energy

The discussion so far refers to all kinds of work. In many cases we
are not interested in expansion work but the work, for example,
that can be extracted electrically from an electrochemical cell or
the work done by our muscles as we move around. Just as the
enthalpy (H = U + pV ) is used to accommodate expansion work
automatically when that is not of direct interest, it is possible to
define another kind of free energy that takes expansion work into
account automatically and focuses our attention on non-expansion
work. The Gibbs energy, which is denoted G, is defined as G = A +
pV. Josiah Willard Gibbs (1839–1903), after whom this property is
named, is justifiably regarded as a founding father of chemical
thermodynamics. He worked at Yale University throughout his life
and was noted for his public reticence. His extensive and subtle
work was published in what we now consider to be an obscure
journal (The Transactions of the Connecticut Academy of Science)
and was not appreciated until it was interpreted by his successors.

In the same way as �A tells us the total work that a process may
do at constant temperature, the change in the Gibbs energy, �G,
tells us the amount of non-expansion work that a process can do
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provided the change is taking place at constant temperature and
pressure. Just as it is not really possible to give a molecular
interpretation of the enthalpy, which is really just a clever
accounting device, it is not possible to give a simple explanation of
the molecular nature of the Gibbs energy. It is good enough for our
purposes to think of it like the Helmholtz energy, as a measure of
the energy that is stored in an orderly way and is therefore free to
do useful work.

There is another ‘just as’ to note. Just as a change in the Helmholtz
energy is a disguised expression for the change in total entropy of
the universe when a process takes place at constant volume and
temperature (remember that �A = –T�S (total)), with
spontaneous processes characterized by a decrease in A, so the
change in Gibbs energy can be identified with a change in total
entropy for processes that occur at constant pressure and
temperature: �G = –T�S (total). Thus, the criterion of
spontaneity of a process at constant pressure and temperature is
that �G is negative:

at constant volume and temperature, a process is spontaneous if it

corresponds to a decrease in Helmholtz energy.

at constant pressure and temperature, a process is spontaneous if it

corresponds to a decrease in Gibbs energy.

In each case, the underlying origin of the spontaneity is the
increase in entropy of the universe, but in each case we can express
that increase in terms of the properties of the system alone and do
not have to worry about doing a special calculation for the
surroundings.

The Gibbs energy is of the greatest importance in chemistry and in
the field of bioenergetics, the study of energy utilization in biology.
Most processes in chemistry and biology occur at constant
temperature and pressure, and so to decide whether they are
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spontaneous and able to produce non-expansion work we need to
consider the Gibbs energy. In fact, when chemists and biologists
use the term ‘free energy’ they almost always mean the Gibbs
energy.

The thermodynamics of freezing

There are three applications that I shall discuss here. One is the
thermodynamic description of phase transitions (freezing and
boiling, for instance; a ‘phase’ is a form of a given substance, such
as the solid, liquid, and vapour phases of water), another is the
ability of one reaction to drive another in its non-spontaneous
direction (as when we metabolize food in our bodies and then
walk or think), and the third is the attainment of chemical
equilibrium (as when an electric battery becomes exhausted).

The Gibbs energy of a pure substance decreases as the
temperature is raised. We can see how to draw that conclusion
from the definition G = H – TS, by noting that the entropy of a
pure substance is invariably positive. Therefore, as T increases, TS
becomes larger and subtracts more and more from H, and G

consequently falls. The Gibbs energy of 100 g of liquid water, for
instance, behaves as shown in Figure 16 by the line labelled
‘liquid’. The Gibbs energy of ice behaves similarly. However,
because the entropy of 100 g of ice is lower than that of 100 g of
water—because the molecules are more ordered in a solid than the
jumble of molecules that constitute a liquid—the Gibbs energy
does not fall away as steeply, and is shown by the line labelled
‘solid’ in the illustration. The entropy of 100 g of water vapour is
much greater than that of the liquid because the molecules of a gas
occupy a much greater volume and are distributed randomly over
it. As a result, the Gibbs energy of the vapour decreases very
sharply with increasing temperature, as shown by the line labelled
‘gas’ in the illustration. At low temperatures we can be confident
that the enthalpy of the solid is lower than that of the liquid
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16. The decrease in Gibbs energy with increasing temperature for
three phases of a substance. The most stable phase corresponds to the
lowest Gibbs energy; thus the solid is most stable at low temperatures,
then the liquid, and finally the gas (vapour). If the gas line falls more
steeply, it might intersect the solid line before the liquid line does, in
which case the liquid is never the stable phase and the solid sublimes
directly to a vapour

(because it takes energy to melt a solid) and the enthalpy of the
liquid lies below that of the vapour (because it takes energy to
vaporize a liquid). That is why we have drawn the Gibbs energies
starting in their relative positions on the left of the
illustration.

The important feature is that although the Gibbs energy of the
liquid is higher than that of the solid at low temperatures, the two
lines cross at a particular temperature (0◦C, 273 K, as it happens,
at normal atmospheric pressure) and from there on the liquid
has a lower Gibbs energy than the solid. We have seen that the
natural direction of change at constant pressure is to lower Gibbs
energy (corresponding, remember, to greater total entropy), so
we can infer that at low temperature the solid form of water is
the most stable, but that once the temperature reaches 0◦C the
liquid becomes more stable and the substance spontaneously
melts.
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The Gibbs energy of the liquid remains the lowest of the three
phases until the steeply falling line for the vapour intersects it. For
water, at normal atmospheric pressure that intersection occurs at
100◦C (373 K), and from that temperature on, the vapour is the
most stable form of water. The system spontaneously falls to lower
Gibbs energy, so vaporization is spontaneous above 100◦C: the
liquid boils.

There is no guarantee that the ‘liquid’ line intersects the ‘solid’ line
before the ‘vapour’ line has plunged down and crossed the ‘solid’
line first. In such a case, the substance will make a direct
transition from solid to vapour without melting to an inter-
mediate liquid phase. This is the process called sublimation. Dry
ice (solid carbon dioxide) behaves in this way, and converts
directly to carbon dioxide gas.

All phase changes can be expressed thermodynamically in a
similar way, including melting, freezing, condensation,
vaporization, and sublimation. More elaborate discussions also
enable us to discuss the effect of pressure on the temperatures at
which phase transitions occur, for pressure affects the locations of
the lines showing the dependence of Gibbs energy on temperature
in different ways, and the intersection points move accordingly.
The effect of pressure on the graph lines for water accounts for a
familiar example, for at sufficiently low pressure its ‘liquid’ line
does not intersect its ‘solid’ line before its ‘vapour’ line has plunged
down, and it too sublimes. This behaviour accounts for the
disappearance of hoar frost on a winter’s morning, when actual ice
is truly dry.

Living off Gibbs energy

Our bodies live off Gibbs energy. Many of the processes that
constitute life are non-spontaneous reactions, which is why we
decompose and putrefy when we die and these life-sustaining
reactions no longer continue. A simple (in principle) example is

74



Free
en

erg
y:Th

e
availab

ility
o
fw

o
rk

17. A process that corresponds to a large increase in total energy
(represented here by an increase in disorder on the left) can drive a
process in which order emerges from disorder (on the right). This is
analogous to a falling heavy weight being able to raise a lighter
weight

the construction of a protein molecule by stringing together in an
exactly controlled sequence numerous individual amino acid
molecules. The construction of a protein is not a spontaneous
process, as order must be created out of disorder. However, if the
reaction that builds a protein is linked to a strongly spontaneous
reaction, then the latter might be able to drive the former, just as
the combustion of a fuel in an engine can be used to drive an
electric generator to produce an orderly flow of electrons, an
electric current. A helpful analogy is that of a weight which can be
raised by coupling it to a heavier weight that raises the lighter
weight as it falls (Figure 17).

In biology a very important ‘heavy weight’ reaction involves the
molecule adenosine triphosphate (ATP). This molecule consists of
a knobbly group and tail of three alternating phosphorus and
oxygen groups of atoms (hence the ‘tri’ and the ‘phosphate’ in its
name). When a terminal phosphate group is snipped off by
reaction with water (Figure 18), to form adenosine diphosphate
(ADP), there is a substantial decrease in Gibbs energy, arising in
part from the increase in entropy when the group is liberated from
the chain. Enzymes in the body make use of this change in Gibbs
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phosphorus (P) and oxygen (O) atoms are marked. Energy is released
when the terminal phosphate group is severed at the location shown by
the line. The resulting ADPmolecule must be ‘recharged’ with a new
phosphate group: that recharging is achieved by the reactions involved
in digestion andmetabolism of food

energy—this falling heavy weight—to bring about the linking of
amino acids, and gradually build a protein molecule. It takes the
effort of about three ATP molecules to link two amino acids
together, so the construction of a typical protein of about 150
amino acid groups needs the energy released by about
450 ATP molecules.

The ADP molecules, the husks of dead ATP molecules, are too
valuable just to discard. They are converted back into ATP
molecules by coupling to reactions that release even more Gibbs
energy—act as even heavier weights—and which reattach a
phosphate group to each one. These heavy-weight reactions are
the reactions of metabolism of the food that we need to ingest
regularly. That food may be the material that has been driven into
existence by even heavier reactions—reactions that release even
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more Gibbs energy, and ultimately off the nuclear processes that
occur on the Sun.

Chemical equilibrium

Our final illustration of the utility of the Gibbs energy is one of
crucial importance in chemistry. It is a well-known feature of
chemical reactions that they all proceed to a condition known as
‘equilibrium’ in which some reactants (the starting materials) are
present and the reaction has appeared to have come to a stop
before all the reactants have been converted into products. In
some cases the composition corresponding to equilibrium is
virtually pure products and the reaction is said to be ‘complete’.
Nevertheless, even in this case there are one or two molecules of
reactants among the myriad product molecules. The explosive
reaction of hydrogen and oxygen to form water is an example. On
the other hand, some reactions do not appear to go at all. Never-
theless, at equilibrium there are one or two product molecules
among the myriad reactant molecules. The dissolution of gold in
water is an example. A lot of reactions lie between these extremes,
with reactants and products both in abundance, and it is a matter
of great interest in chemistry to account for the composition
corresponding to equilibrium and how it responds to the
conditions, such as the temperature and the pressure. An
important point about chemical equilibrium is that when it is
achieved the reaction does not simply grind to a halt. At a
molecular level all is turmoil: reactants form products and
products decompose into reactants, but both processes occur at
matching rates, so there is no net change. Chemical equilibrium is
dynamic equilibrium, so it remains sensitive to the conditions: the
reaction is not just lying there dead.

The Gibbs energy is the key. Once again we note that at constant
temperature and pressure a system tends to change in the
direction corresponding to decreasing Gibbs energy. When
applying it to chemical reactions, we need to know that the Gibbs
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energy of the reaction mixture depends on the composition of the
mixture. That dependence has two origins. One is the difference in
Gibbs energies of the pure reactants and the pure products: as the
composition changes from pure reactants to pure products, so the
Gibbs energy changes from one to the other. The second
contribution is from the mixing of the reactants and products,
which is a contribution to the entropy of the system and therefore,
through G = H − TS, to the Gibbs energy too. This contribution is
zero for pure reactants and for pure products (where there is
nothing to mix), and is a maximum when the reactants and
products are both abundant and the mixing is extensive.

When both contributions are taken into account, it is found that
the Gibbs energy passes through a minimum at an intermediate
composition. This composition corresponds to equilibrium. Any
composition to the left or right of the minimum has a higher
Gibbs energy, and the system tends spontaneously to migrate to
lower Gibbs energy and attain the composition corresponding to
equilibrium. If the composition is at equilibrium, then the
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19. The variation of the Gibbs energy of a reaction mixture as it
changes from pure reactants to pure products. In each case, the
equilibrium composition, which shows no further net tendency to
change, occurs at the minimum of the curve
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reaction has no tendency to run in either direction. In some cases
(Figure 19), the minimum lies far to the left, very close to pure
reactants, and the Gibbs function reaches its minimum value after
only a few molecules of products are formed (as for gold dissolving
in water). In other cases, the minimum lies far to the right, and
almost all the reactants must be consumed before the minimum is
reached (as for the reaction between hydrogen and oxygen).

One everyday experience of a chemical reaction reaching
equilibrium is an exhausted electric battery. In a battery, a
chemical reaction drives electrons through an external circuit by
depositing electrons in one electrode and extracting them from
another electrode. This process is spontaneous in the thermo-
dynamic sense, and we can imagine it taking place as the reactants
sealed into the battery convert to products, and the composition
migrates from left to right in Figure 19. The Gibbs energy of the
system falls, and in due course reaches its minimum value. The
chemical reaction has reached equilibrium. It has no further
tendency to change into products, and therefore no further
tendency to drive electrons through the external circuit. The
reaction has reached the minimum of its Gibbs energy and the
battery—but not the reactions still continuing inside—is dead.
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Chapter 5

The third law

The unattainability of zero

I have introduced the temperature, the internal energy, and the
entropy. Essentially the whole of thermodynamics can be
expressed in terms of these three quantities. I have also introduced
the enthalpy, the Helmholtz energy, and the Gibbs energy; but
they are just convenient accounting quantities, not new
fundamental concepts. The third law of thermodynamics is not
really in the same league as the first three, and some have argued
that it is not a law of thermodynamics at all. For one thing, it does
not inspire the introduction of a new thermodynamic function.
However, it does make possible their application.

Hints of the third law are already present in the consequences of
the second law, where we considered its implications for
refrigeration. We saw that the coefficient of performance of a
refrigerator depends on the temperature of the body we are
seeking to cool and that of the surroundings. The coefficient of
performance falls to zero as the temperature of the cooled body
approaches zero. That is, we need to do an ever increasing, and
ultimately infinite, amount of work to remove energy from the
body as heat as its temperature approaches absolute zero.

There is another hint about the nature of the third law in our
discussion of the second. We have seen that there are two
approaches to the definition of entropy, the thermodynamic, as
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expressed in Clausius’s definition, and the statistical, as expressed
by Boltzmann’s formula. They are not quite the same: the
thermodynamic definition is for changes in entropy; the statistical
definition is an absolute entropy. The latter tells us that a fully
ordered system, one without positional disorder and without
thermal disorder—in short, a system in its nondegenerate ground
state—has zero entropy regardless of the chemical composition of
the substance, but the former leaves open the possibility that the
entropy has a value other than zero at T = 0 and that different
substances have different entropies at that temperature.

The third law is the final link in the confirmation that Boltzmann’s
and Clausius’s definitions refer to the same property and therefore
justifies the interpretation of entropy changes calculated by using
thermodynamics as changes in disorder of the system, with
disorder understood to have the slightly sophisticated
interpretation discussed in Chapter 3. It also makes it possible to
use data obtained by thermal measurements, such as heat
capacities, to predict the composition of reacting systems that
correspond to equilibrium. The third law also has some
troublesome implications, especially for those seeking very low
temperatures.

Extreme cold

As usual in classical thermodynamics, we focus on observations
made outside the system of interest, in its surroundings, and close
our minds, initially at least, to any knowledge or preconceptions
we might have about the molecular structure of the system. That
is, to establish a law of classical thermodynamics, we proceed
wholly phenomenologically.

Interesting things happen to matter when it is cooled to very low
temperatures. For instance, the original version of
superconductivity, the ability of certain substances to conduct
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electricity with zero resistance, was discovered when it became
possible to cool matter to the temperature of liquid helium (about
4 K). Liquid helium itself displays the extraordinary property of
superfluidity, the ability to flow without viscosity and to creep
over the apparatus that contains it, when it is cooled to about 1 K.
The challenge, partly because it is there, is to cool matter to
absolute zero itself. Another challenge, to which we shall return, is
to explore whether it is possible—and even meaningful—to cool
matter to temperatures below absolute zero of temperature; to
break, as it were, the temperature barrier.

Experiments to cool matter to absolute zero proved to be very
difficult, not merely because of the increasing amount of work that
has to be done to extract a given amount of heat from an object as
its temperature approaches zero. In due course, it was conceded
that it is impossible to attain absolute zero using a conventional
thermal technique; that is, a refrigerator based on the heat engine
design we discussed in Chapter 3. This empirical observation is
the content of the phenomenological version of the third law of
thermodynamics:

no finite sequence of cyclic processes can succeed in cooling a body

to absolute zero.

This is a negative statement; but we have seen that the first and
second laws can also be expressed as denials (no change in
internal energy occurs in an isolated system, no heat engine
operates without a cold sink, and so on), so that is not a weakening
of its implications. Note that it refers to a cyclic process: there
might be other kinds of process that can cool an object to absolute
zero, but the apparatus that is used will not be found to be in the
same state as it was initially.

You will recall that in Chapter 1 we introduced the quantity ‚ as a
more natural measure of temperature (with ‚ = 1/kT), with
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absolute zero corresponding to infinite ‚. The third law as we have
stated it, transported to a world where people use ‚ to express
temperature, appears almost self-evident, for it becomes ‘no finite
sequence of cyclic processes can succeed in cooling a body to
infinite ‚’, which is like saying that no finite ladder can be used to
reach infinity. There must be more to the third law than
appearances suggest.

Achieving zero

We have remarked that thermodynamicists become excited when
nothing at all happens and that negations can have seriously
positive consequences, provided we think about the consequences
carefully. The pathway to a positive implication in this case is
entropy, and we need to consider how the third law impinges on
the thermodynamic definition of entropy. To do so, we need to
think about how low temperatures are achieved.

Let’s suppose that the system consists of molecules that each
possess one electron. We need to know that a single electron has
the property of spin, which for our purposes we can think of as an
actual spinning motion. For reasons rooted in quantum
mechanics, an electron spins at a fixed rate and may do so either
clockwise or anticlockwise with respect to a given direction. These
two spin states are denoted ↑ and ↓. The spinning motion of the
electron gives rise to a magnetic field, and we may think of each
electron as behaving like a tiny bar magnet oriented in either of
two directions. In the presence of an applied magnetic field, the
two orientations of the bar magnets arising from the two spin
states have different energies, and the Boltzmann distribution can
be used to calculate the small difference in populations for a given
temperature. At room temperature there will be slightly more
lower energy ↓ spins than higher energy ↑ spins. If somehow we
could contrive to convert some of the ↑ into ↓ spins, then the
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population difference will correspond to a lower temperature,
and we shall have cooled the sample. If we could contrive to
make all the spins ↓, then we shall have reached absolute
zero.

We shall represent the sample at room temperature and in the
absence of a magnetic field by . . .↓↓↑↓↑↑↓↓↓↑↓ . . .with a random
distribution of ↓ and ↑ spins. These spins are in thermal contact
with the rest of the material in the sample and share the same
temperature. Now we increase the magnetic field with the sample
in thermal contact with its surroundings. Because the sample can
give up energy to its surroundings, the electron spin populations
can adjust. The sample becomes . . .↑↓↓↑↓↓↓↑↑↓↑ . . .with a
small preponderance of ↓ spins over ↑ spins. The spin
arrangement contributes to the entropy, and so we can conclude
that, because the spin distribution is less random than it was
initially (because we can be more confident about getting a ↓ in a
blind selection), the entropy of the sample has been reduced
(Figure 20). That is, by turning up the magnetic field and allowing
energy to escape as the electron spins realign, we lower the
entropy of the sample.

Now consider what happens when we isolate the sample thermally
from its surroundings and gradually reduce the applied field to
zero. A process that occurs without the transfer of energy as heat is
called adiabatic, as we saw in Chapter 1, so this step is the
‘adiabatic demagnetization’ step that gives the process its name.
Because the process is adiabatic the entropy of the entire sample
(the spins and their immediate surroundings) remains the same.
The electron spins no longer have a magnetic field to align against,
so they resume their original higher entropy random arrangement
like . . .↓↓↑↓↑↑↓↓↓↑↓ . . . . However, because there is no change in
the overall entropy of the sample, the entropy of the molecules
that carry the electrons must be lowered, which corresponds to a
lowering of temperature. Isothermal magnetization followed by
adiabatic demagnetization has cooled the sample.
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20. The process of adiabatic demagnetization for reaching low
temperatures. The arrows depict the spin alignment of the electrons in
the sample. The first step (M) is isothermal magnetization, which
increases the alignment of the spins, the second step (D) is adiabatic
demagnetization, which preserves the entropy and therefore
corresponds to a lowering of temperature. If the two curves did not
meet at T = 0, it would be possible to lower the temperature to zero (as
shown on the left). That a finite sequence of cycles does not bring the
temperature to zero (as shown on the right) implies that the curves
meet at T = 0

Next, we repeat the process. We magnetize the newly cooled
sample isothermally, isolate it thermally, and reduce the field
adiabatically. This cycle lowers the temperature of the sample a
little more. In principle, we can repeat this cyclic process, and
gradually cool the sample to any desired temperature.

At this point, however, the wolf inside the third law hurls off its
sheep’s clothing. If the entropy of the substance with and without
the magnetic field turned on were to be like that shown in the
left-hand half of Figure 20, then we could select a series of cyclic
changes that would bring the sample to T = 0 in a finite series of
steps. It has not proved possible to achieve absolute zero in this
way. The implication is that the entropy does not behave as shown
on the left, but must be like that shown on the right of the
illustration, with the two curves coinciding at T = 0.
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There are other processes that we might conceive of using to reach
absolute zero in a cyclic manner. For instance, we could take a gas
and compress it isothermally then allow it to expand adiabatically
to its initial volume. The adiabatic expansion of a gas does work,
and as no heat enters the system, the internal energy falls. As we
have seen, the internal energy of a gas arises largely from the
kinetic energy of its molecules, so adiabatic expansion must result
in their slowing down and therefore to a lowering of the
temperature. At first sight, we might expect to repeat this cycle of
isothermal compression and adiabatic expansion, and hope to
bring the temperature down to zero. However, it turns out that the
effect of adiabatic expansion on the temperature diminishes as the
temperature falls, so the possibility of using this technique is
thwarted.

An even more elaborate technique would involve a chemical
reaction in which the process involved using a reactant A to form a
product B, finding an adiabatic path to recreate A, and continuing
this cycle. Once again, careful analysis shows that the technique
will fail to reach absolute zero because the entropies of A and
B converge on the same value as the temperature approaches zero.

The common feature of this collective failure is traced to the
convergence of the entropies of substances to a common value as
T approaches zero. So, we can replace the phenomenological
statement of the third law with a slightly more sophisticated
version expressed in terms of the entropy:

the entropy of every pure, perfectly crystalline substance

approaches the same value as the temperature approaches zero.

Note that the experimental evidence and the third law do not tell
us the absolute value of the entropy of a substance at T = 0. All the
law implies is that all substances have the same entropy at T = 0
provided they have nondegenerate ground states—no residual
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order arising from positional disorder of the type characteristic of
ice. However, it is expedient and sensible to choose the common
value for the entropy of all perfectly crystalline substances as zero,
and thus we arrive at the conventional ‘entropy’ statement of the
third law:

the entropy of all perfectly crystalline substances is zero at T = 0.

The third law does not introduce a new thermodynamic function,
and is therefore not the same type of law as the other three: it
simply implies that the entropy can be expressed on an absolute
scale.

Some technical consequences

At first sight, the third law is important only to that very tiny
section of humanity struggling to beat the low-temperature record
(which, incidentally, currently stands at 0.000000000 1K for
solids and at about 0.0000000005K for gases—when molecules
travel so slowly that it takes 30 s for them to travel an inch ). The
law would seem to be irrelevant to the everyday world, unlike the
other three laws of thermodynamics, which govern our daily lives
with such fearsome relevance.

There are indeed no pressing consequences of the third law for the
everyday world, but there are serious consequences for those who
inhabit laboratories. First, it eliminates one of science’s most
cherished idealizations, that of a perfect gas. A perfect gas—a fluid
that can be regarded as a chaotic swarm of independent molecules
in vigorous random motion—is taken to be the starting point for
many discussions and theoretical formulations in
thermodynamics, but the third law rules out its existence at T = 0.
The arguments are too technical to reproduce here, but all stem
from the vanishing of entropy at T = 0. There are technical salves
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to what might seem fatal injuries to the fabric of thermodynamics,
so the subject does survive this onslaught from its own laws.
Another technical consequence is that one major application of
thermodynamics to chemistry lies in the use of thermal data,
specifically heat capacities measured over a range of temperatures,
to calculate the equilibrium composition of reactions and thus to
decide whether a reaction is likely to be successful or not and to
optimize the conditions for its implementation in industry. The
third law provides the key to this application, which could not be
done if the entropies of substances were different at absolute
zero.

Temperatures below zero

Absolute zero is unattainable—in a sense. Too much should not be
read into the third law, because in the form that expresses the
unattainability of absolute zero it concerns processes that
maintain thermal equilibrium and are cyclic. It leaves open the
possibility that there are non-cyclic processes that can reach
absolute zero. The intriguing consequential question that might
occur is whether it is possible to contrive special techniques that
take a sample to the other side of zero, where the ‘absolute’
temperature is negative, whatever that means.

To understand what it means for a body to have a temperature
below zero, below, paradoxically, its lowest possible value, we need
to recall from Chapter 1 that T is a parameter that occurs in the
Boltzmann distribution and which specifies the populations of the
available energy levels. It will be simplest, and in practice most
readily realizable, to consider a system that has only two energy
levels, a ground state and a second state above it in energy. An
actual example is an electron spin in a magnetic field, of the kind
already mentioned in this chapter. As we have already remarked,
because these two spin states correspond to opposite orientations
of the bar magnet, they have two different energies.
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According to the Boltzmann distribution, at all finite temperatures
there will be more electrons in the state of lower energy
(the ↓ state) than of higher energy (the ↑ state). At T = 0, all the
electrons will be in the ground state (all will be ↓) and the entropy
will be zero. As the temperature is raised, electrons migrate into
the upper state, and the internal energy and the entropy both
increase. When the temperature becomes infinite, the electrons
are distributed equally over the two states, with half the electrons
↓ and the other half ↑. The entropy has reached its maximum
value, a value which according to Boltzmann’s formula is
proportional to log 2.

Note in passing that an infinite temperature does not mean that
all the electrons are in the upper state: at infinite tempera-
ture, there are equal populations in the two states. This is a
general conclusion: if a system has many energy levels, then when
the temperature is infinite, all the states are equally populated.

Now suppose that T is negative, such as –300 K. When
T is given a negative value in the Boltzmann distribution we find
that the population of the upper state is predicted to be greater
than that in the lower state. For instance, if it happens that at
300 K the ratio of populations upper : lower is 1 : 5, then setting
T = −300 K gives a ratio of 5 : 1, with five times as many electron
spins in the upper energy state than in the lower state. Setting
T = −200 K gives a ratio of 11 : 1, and with T = −100 K the ratio is
125 : 1. At −10 K the population of the upper state is nearly
1 000000000000000000000 times greater. Notice how, as
the temperature approaches zero from below (−300 K, −200K,
−100 K, . . . ), the population migrates almost exclusively into the
upper state. In fact, just below 0, the population is entirely in the
upper state. Immediately above zero the population is entirely in
the lower state. We have seen that as the temperature is raised
from zero to infinity, the population migrates from the lower state
and the two states become equally populated. As the temperature
is lowered from zero tominus infinity the population migrates
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21. The variation of (left) the internal energy and (right) the entropy
for a two-level system. The expressions for these two properties can be
calculated for negative temperatures, as shown on the left of each
illustration. Just above T = 0 all the molecules are in the ground state;
just below T = 0 they are all in the upper state. As the temperature
becomes infinite in either direction, the populations become equal

from the upper state into the ground state, and at minus infinity
itself the populations are again equal.

We saw in Chapter 1 that the inverse temperature, specifically ‚ =
1/kT, is a more natural measure of temperature than T itself. That
it is to humanity’s regret that ‚ has not been adopted becomes very
clear when instead of plotting the energy against T as shown in
Figure 21, we plot it against ‚, for in Figure 22 we get a nice
smooth curve instead of the unpleasant jump in the first graph at
T = 0. You should also note that there is a long expanse of ‚ at high
‚, corresponding to very low temperatures, and it should not be
surprising that there is plenty of room for a lot of interesting
physics as T approaches zero. We are stuck, however, with the
inconvenience of T in place of the smooth convenience of ‚.
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22. The same system as in Figure 21 but plotted against ‚ instead of T.
The internal energy varies smoothly across the range

If we could contrive a system in which there are more ↑ (high
energy) electrons than ↓ (low energy) electrons, then from the
Boltzmann distribution we would ascribe it a negative
temperature. Thus, if we could contrive a system in which there
are five times as many ↑ electrons as ↓ electrons, then for the same
energy separation as we assumed in the preceding discussion, we
would report the temperature as −300 K. If we managed to
contrive a ratio of 11 : 1, then the temperature would be reported as
−200 K, and so on. Note that it is easier to contrive extremely low
temperatures (those approaching minus infinity) because they
correspond to very tiny imbalances of populations whereas large
imbalances correspond to temperatures just below zero. If the
temperature is −1 000000K, the population ratio is only
1.0005 : 1, a difference of only 0.05 per cent.

The entropy tracks these changes in the distribution of
populations. Thus, whereas S increases from zero to log 2 (in
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suitable units) as T rises from zero to infinity, so too does it
increase from zero to log 2 at infinitely negative temperature. On
either side of zero we know precisely which state every electron is
in (as ↓ just above zero and as ↑ at just below zero), so S = 0. At
either extreme of infinity, the two states are equally populated, so a
random selection gives equal chances of drawing ↑ and ↓. You
should reflect on these figures in terms of ‚ instead of T.

The big question is whether the inversion of a thermal equilibrium
(that is, Boltzmann) population can be contrived. It can, but not
by thermodynamic procedures. There are a variety of experimental
techniques available for polarizing, as it is called, a collection of
electron or nuclear spins that use pulses of radiofrequency energy.
In fact, there is an everyday device that makes use of negative
temperatures: the laser. The essential principle of a laser is to
produce large numbers of atoms or molecules in an excited state
and then to stimulate them to discard their energy collectively.
What we have referred to as the ↓ and ↑ states of an electron can
be regarded as the analogues of the lower and upper energy states
of the atom or molecule in the laser material, and the inverted
population on which the laser effect depends corresponds to a
negative absolute temperature. All the laser-equipped devices we
use around the home, as in CD and DVD players, operate at
temperatures below zero.

Thermodynamics below zero

The concept of negative temperature really applies in practice only
to systems that possess two energy levels. To achieve a distribution
of populations over three or more energy levels that can be
expressed as a Boltzmann distribution with a formally negative
value of the temperature is much more difficult and highly
artificial. Moreover, negative temperatures effectively take us
outside the domain of classical thermodynamics because they have
to be contrived and in general do not persist for more than very
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short periods. Nevertheless, it is possible—and interesting—to
reflect on the thermodynamic properties of systems that have
formally negative temperatures.

The first law is robust, and independent of how populations are
distributed over the available states. Therefore, in a region of
negative temperature, energy is conserved and the internal energy
may be changed by doing work or making use of a temperature
difference.

The second law survives because the definition of entropy survives,
but its implications are different. Thus, suppose energy leaves a
system as heat at a negative temperature, then according to
Clausius’s expression the entropy of the system increases: the
energy change is negative (say −100 J) and so is the temperature
(say −200 K), so their ratio is positive (in this case (−100 J)/
(−200 K) = +0.5 J K−1). We can understand that conclusion at a
molecular level by thinking about a two-level system: think of the
inverted population, which has a high energy but low entropy,
losing some of its energy and the population returning towards
equality, a high entropy (log 2) condition, so the entropy increases
as energy is lost. Similarly, if energy as heat enters a system of
negative temperature, the entropy of the system decreases (if 100 J
enters a system as −200 K, the change in entropy is (+100 J)/
(−200 K) = −0.5 J K−1, a decrease). In this case, the upper state
becomes more highly populated as energy floods in, so the
population moves towards a greater imbalance, towards
the entire population being in the upper state and the entropy
close to zero.

The second law accounts for the ‘cooling’ of a system with a
negative temperature. Suppose heat leaves the system: its entropy
increases (as we have just seen). If that energy enters the
surroundings at a positive temperature, their entropy also
increases. Therefore, there is an overall increase in entropy when
heat is transferred from a region of negative temperature to one of
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‘normal’ positive temperature. Once the populations of the first
system have equalized, we can treat the system as having a very
high positive temperature—one close to infinite temperature.
From this point on, we have an ordinary very hot system in contact
with a cooler system, and the entropy continues to increase as heat
flows from the former to the latter. In short, the second law
implies that there will be a spontaneous transfer of heat from a
system of negative temperature in contact with one of positive
temperature and that the process will continue until the
temperatures of the two systems are equal. The only difference
between this discussion and the conventional one is that, provided
one system has a negative temperature, the heat flows from the
system with the lower (negative) temperature to the one with the
higher (positive) temperature.

If both systems have a negative temperature, heat flows from the
system with the higher (less negative) temperature to the system
with the lower (more negative) temperature. To understand that
conclusion, suppose a system at −100 K loses 100 J as heat: the
entropy increases by (−100 J)/(−100 K) = 1 J K−1. If that same
heat is deposited in a system at −200 K, the entropy changes by
(+100 J)/(−200 K) = −0.5 J K−1, a decrease. Therefore, overall
the total entropy of the two systems increases by 0.5 J K−1 and the
flow of heat from −100 K (the higher temperature) to −200 K is
spontaneous.

The efficiency of a heat engine, which is a direct consequence of
the second law, is still defined by the Carnot expression (p. 40).
For your convenience again: ε = 1 − Tsink/Tsource. However, if the
temperature of the cold reservoir is negative, the efficiency of the
engine may be greater than 1. For instance, if the temperature of
the hot source is 300 K and that of the cold sink is −200 K, then
the efficiency works out as 1.67: we can expect to get more work
from the engine than the heat we extract from the hot source. The
extra energy actually comes from the cold sink, because, as we
have seen, extracting heat from a source with a negative
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temperature increases its entropy. In a sense, as the inverted
population in the cold (negative) sink tumbles back down towards
equality, the energy released contributes to the work that the
engine produces.

If both the source and the sink of a heat engine are at negative
temperatures, the efficiency is less than 1, and the work done is the
conversion of the energy withdrawn as heat from the ‘warmer’, less
negative, sink.

The third law requires a slight amendment on account of the
discontinuity of the thermal properties of a system across T = 0.
First, on the ‘normal’ side of zero, we simply have to change the
law to read ‘it is impossible in a finite number of cycles to cool any
system down to zero.’ On the other side of zero, the law takes the
form that ‘it is impossible in a finite number of cycles to heat any
system up to zero.’ Not, I suspect, that anyone would wish to try!
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Conclusion

We are at the end of our journey. We have seen that thermo-
dynamics, the study of the transformations of energy, is a subject
of great breadth and underlies and elucidates many of the most
common concepts of the everyday world, such as temperature,
heat, and energy. We have seen that it emerged from reflections on
measurements of the properties of bulk samples, but that the
molecular interpretation of its concepts enriches our
understanding of them.

The first three laws each introduce a property on which the edifice
of thermodynamics is based. The zeroth law introduced the
concept of temperature, the first law introduced internal energy,
and the second law introduced entropy. The first law
circumscribed the feasible changes in the universe: those that
conserve energy. The second law identified from among those
feasible changes the ones that are spontaneous—which have a
tendency to occur without us having to do work to drive them. The
third law brought the molecular and empirical formulations of
thermodynamics into coincidence, uniting the two rivers.

Where I have feared to tread is in two domains that spring from or
draw analogies with thermodynamics. I have not touched on the
still insecure world of non-equilibrium thermodynamics, where
attempts are made to derive laws relating to the rate at which a
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process produces entropy as it takes place. Nor have I touched on
the extraordinary, and understandable, analogies in the field of
information theory, where the content of a message is closely
related to the statistical thermodynamic definition of entropy.
I have not mentioned other features that some regard as central to
a deep understanding of thermodynamics, such as the fact that its
laws, especially the second law, are statistical in nature and
therefore admit to brief failures as molecules fluctuate into
surprising arrangements.

What I have sought to cover are the core concepts, concepts that
effectively sprang from the steam engine but reach out to embrace
the unfolding of a thought. This little mighty handful of laws truly
drive the universe, touching and illuminating everything we know.
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Further reading

If you would like to take any of these matters further, then here are
some suggestions. I wrote about the conservation of energy and the
concept of entropy in my Galileo’s Finger: The Ten Great Ideas of

Science (Oxford University Press, 2003), at about this level but slightly
less quantitatively. In The Second Law (W. H. Freeman & Co., 1997) I
attempted to demonstrate that law’s concepts and implications largely
pictorially, inventing a tiny universe where we could see every atom.
More serious accounts will be found in my various textbooks. In order
of complexity, these are Chemical Principles: The Quest for Insight

(with Loretta Jones, W. H. Freeman & Co., 2010), Elements of Physical

Chemistry (with Julio de Paula, Oxford University Press and W. H.
Freeman & Co., 2009), and Physical Chemistry (with Julio de Paula,
Oxford University Press and W. H. Freeman & Co., 2010).

Others, of course, have written wonderfully about the laws. I can direct
you to that most authoritative account, Thermodynamics, by G. N.
Lewis and M. Randall (McGraw-Hill, 1923; revised by K. S. Pitzer and
L. Brewer, 1961). Other useful and reasonably accessible texts on my
shelves are The Theory of Thermodynamics, by J. R. Waldram
(Cambridge University Press, 1985), Applications of Thermodynamics,
by B. D. Wood (Addison-Wesley, 1982), Entropy Analysis, by N. C.
Craig (VCH, 1992), Entropy in Relation to Incomplete Knowledge, by
K. G. Denbigh and J. S. Denbigh (Cambridge University Press, 1985),
and Statistical Mechanics: A Concise Introduction for Chemists, by B.
Widom (Cambridge University Press, 2002).
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diathermic 6, 21, 45
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efficiency 39–40, 58–60
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electron spin 83–4
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Fahrenheit, D. 7
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flat battery 79
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theorem 33
food 60, 62, 76–7
free energy 63–79
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fusion 31

G
gasoline combustion 69–70
Gibbs, J. W. 70
Gibbs energy 70–9, 80

chemical reaction 77–8
mixing 78
phase transition 72
temperature dependence 74

ground state 54

H
heat 18–19, 21–6

molecular nature 24–5
heat capacity 31–5

temperature dependence
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heat engine 38–44
efficiency 39–40, 58, 94–5

heat pump 58–61
heat tax 64–5
heater 17–18
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Helmholtz, H. von 66
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63–70, 80, 90–3
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Joule, J. P. 18–19
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kelvin 12
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Kelvin statement 41–2, 43–4,
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latent heat 31
law of conservation of energy 16,
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low temperature record 87
low temperatures 87–95

M
maximum work 28
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molecular interpretation
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Helmholtz energy 67
pressure 9, 13
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Noether, E. 35–6
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non-cyclic process 88
non-equilibrium

thermodynamics 97–8

O
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Planck, M. 55
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Rankine scale 8
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scalding 31
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Clausius statement 43
entropy statement 49
Kelvin statement 41
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sink 39
sneeze analogy 48
Snow, C. P. 37
source 38
spin 85
spontaneous change 51, 67,
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spontaneous process 41–2

constant pressure 65
constant volume 65

state function 20
statistical thermodynamics 9,
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steam engine 26, 38–44, 58

abstraction 61–2
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superconductivity 81–2
superfluidity 82
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temperature 7–8, 80
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thermal equilibrium 5–6, 28,
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thermodynamic scale 8
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molecular nature 24
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Symbol and unit index

A Helmholtz energy 66

‚ (beta) = 1/kT 10

c coefficient of performance 60
C heat capacity 32

D degeneracy 55
Delta X, �X = Xfinal − Xinitial 30

E energy 10
ε (epsilon) efficiency 45

g acceleration of free fall 17
G Gibbs energy 70

H enthalpy 29–30

J joule 11

kBoltzmann’s constant 11
K kelvin 8
kg kilogram 11

mmass 17
m metre 11

p pressure 29

q energy transferred as heat 48

S entropy 38, 47
s second 11

T temperature 7

U internal energy 19

W watt 48–9
W weight of arrangement 54
w energy transferred as work 59
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pressures to which these have responded. This is a book
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Chris Mortensen, University of Adelaide

www.oup.co.uk/isbn/0-19-289320-3

www.oup.co.uk/isbn/0-19-289320-3


PHILOSOPHY
A Very Short Introduction

Edward Craig

This lively and engaging book is the ideal introduction for
anyone who has ever been puzzled by what philosophy is
or what it is for.

Edward Craig argues that philosophy is not an activity
from another planet: learning about it is just a matter of
broadening and deepening what most of us do already.
He shows that philosophy is no mere intellectual pastime:
thinkers such as Plato, Buddhist writers, Descartes,
Hobbes, Hume, Hegel, Darwin, Mill and de Beauvoir were
responding to real needs and events - much of their work
shapes our lives today, and many of their concerns are still
ours.

'A vigorous and engaging introduction that speaks to the
philosopher in everyone.'

John Cottingham, University of Reading

'addresses many of the central philosophical questions in
an engaging and thought-provoking style . . . Edward
Craig is already famous as the editor of the best long
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he deserves to become even better known as the author
of one of the best short ones.'
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